<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鈰對工程機械用700 MPa級高強鋼焊接性能的影響

陸斌 陳芙蓉 劉偉建 智建國

陸斌, 陳芙蓉, 劉偉建, 智建國. 鈰對工程機械用700 MPa級高強鋼焊接性能的影響[J]. 工程科學學報, 2020, 42(11): 1481-1487. doi: 10.13374/j.issn2095-9389.2019.11.21.004
引用本文: 陸斌, 陳芙蓉, 劉偉建, 智建國. 鈰對工程機械用700 MPa級高強鋼焊接性能的影響[J]. 工程科學學報, 2020, 42(11): 1481-1487. doi: 10.13374/j.issn2095-9389.2019.11.21.004
LU Bin, CHEN Fu-rong, LIU Wei-jian, ZHI Jian-guo. Effect of cerium on welding performance of 700 MPa high-strength steel used in construction machinery[J]. Chinese Journal of Engineering, 2020, 42(11): 1481-1487. doi: 10.13374/j.issn2095-9389.2019.11.21.004
Citation: LU Bin, CHEN Fu-rong, LIU Wei-jian, ZHI Jian-guo. Effect of cerium on welding performance of 700 MPa high-strength steel used in construction machinery[J]. Chinese Journal of Engineering, 2020, 42(11): 1481-1487. doi: 10.13374/j.issn2095-9389.2019.11.21.004

鈰對工程機械用700 MPa級高強鋼焊接性能的影響

doi: 10.13374/j.issn2095-9389.2019.11.21.004
基金項目: 國家重點研發計劃資助項目(2016YFB0300604)
詳細信息
    通訊作者:

    E-mail: cfr7075@vip.163.com

  • 中圖分類號: TG142.71

Effect of cerium on welding performance of 700 MPa high-strength steel used in construction machinery

More Information
  • 摘要: 針對工業生產700 MPa級高強度調質態鋼板,通過Gleeble3500熱模擬機進行模擬焊接試驗,利用光學顯微鏡、硬度儀、場發射掃描電鏡等設備對比研究了稀土Ce對高強鋼焊接熱影響區(HAZ)顯微組織、晶粒度和力學性能的影響。研究結果表明,焊接熱輸入為25 kJ·cm?1和50 kJ·cm?1時,無稀土鋼焊接熱影響區沖擊功分別為84.8 J和24.5 J,Ce質量分數為0.0018%的鋼焊接熱影響區沖擊功分別為110.0 J和112.0 J,因此鋼中加入適量Ce能夠有效改善鋼板焊接韌性。對比分析兩種實驗鋼焊接熱影響區晶粒尺寸和顯微組織可以看出,隨著焊接熱輸入值增大,高強鋼焊接熱影響區顯微組織均逐漸從馬氏體、下貝氏體轉變為上貝氏體和粒狀貝氏體組織,且奧氏體晶粒尺寸明顯增大。但相同焊接熱輸入下,含Ce鋼焊接熱影響區晶粒尺寸顯著減小,組織更加細小,且脆性的上貝氏體組織減少,從而顯著提高了700 MPa級高強鋼的焊接性能。

     

  • 圖  1  鋼A不同焊接熱輸入試樣焊接熱影響區顯微組織。(a) 25 kJ·cm?1;(b) 50 kJ·cm?1;(c) 75 kJ·cm?1;(d) 100 kJ·cm?1

    Figure  1.  Microstructures in HAZ of sample A after welding simulation: (a) 25 kJ·cm?1; (b) 50 kJ·cm?1; (c) 75 kJ·cm?1; (d) 100 kJ·cm?1

    圖  2  鋼B不同焊接熱輸入試樣焊接熱影響區顯微組織。(a) 25 kJ·cm?1;(b) 50 kJ·cm?1;(c) 75 kJ·cm?1;(d) 100 kJ·cm?1

    Figure  2.  Microstructures in HAZ of sample B after welding simulation: (a) 25 kJ·cm?1; (b) 50 kJ·cm?1; (c) 75 kJ·cm?1; (d) 100 kJ·cm?1

    圖  3  鋼A不同焊接熱輸入試樣焊接熱影響區原奧氏體晶粒照片。(a) 25 kJ·cm?1;(b) 50 kJ·cm?1

    Figure  3.  Prior-austenite grains in HAZ of sample A after welding simulation: (a) 25 kJ·cm?1; (b) 50 kJ·cm?1

    圖  4  鋼B不同焊接熱輸入試樣焊接熱影響區原奧氏體晶粒照片。(a) 25 kJ·cm?1;(b) 50 kJ·cm?1

    Figure  4.  Prior-austenite grains in HAZ of sample B after welding simulation: (a) 25 kJ·cm?1; (b) 50 kJ·cm?1

    圖  5  實驗鋼原奧氏體晶粒平均尺寸

    Figure  5.  Average sizes of prior-austenite grains in HAZ

    圖  6  無稀土時高強鋼凝固過程中V、Nb、Ti和Al的碳氮化物計算

    Figure  6.  Calculations of carbonitrides of V, Nb, Ti, and Al of high-strength steel without addition of cerium

    圖  7  凝固過程夾雜物析出計算。(a)鋼A;(b)鋼B

    Figure  7.  Calculated inclusion precipitations: (a) steel A; (b) steel B

    圖  8  鋼B試樣夾雜物分析(焊接熱輸入為25 kJ·cm?1)。 (a) 晶界上的黑色小洞;(b) 晶界上的稀土夾雜物

    Figure  8.  Inclusions in HAZ of sample B (25 kJ·cm?1 of heat input): (a) holes in grain boundaries observed; (b) rare earth inclusions in grain boundaries

    圖  9  實驗鋼不同熱輸入下室溫沖擊功

    Figure  9.  HAZ impact energy at different heats input of experimental steels

    圖  10  實驗鋼不同熱輸入下焊接熱影響區硬度

    Figure  10.  HAZ hardness values at different heat inputs of experimental steels

    表  1  實驗鋼化學成分(質量分數)

    Table  1.   Chemical composition of experimental steels %

    SampleCSiMnPAlNbVO
    Sample A0.120.321.600.0140.0240.0470.0660.0012
    Sample B0.120.371.700.0140.0270.0480.0690.0016
    SampleCrMoCaMgCeTiSN
    Sample A0.2840.1300.00170.000400.0170.00190.0030
    Sample B0.3000.1300.00120.00050.00180.0170.00300.0037
    下載: 導出CSV

    表  2  實驗鋼母材力學性能

    Table  2.   Mechanical properties of experimental steels

    ReL/MPaRm/MPaA/%Akv/JAverage value of Akv/J
    Sample A79479983283014.515.0213213220216
    Sample B80380084084314.014.5181209227205
    Note: ReL—yield strength, Rm—tensile strength, A—elongation, Akv—impact energy at ?20 ℃.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Lou H N, Wang C, Wang B X, et al. Effect of Ti–Mg–Ca treatment on properties of heat-affected zone after high heat input welding. J Iron Steel Res Int, 2019, 26(5): 501 doi: 10.1007/s42243-018-0091-6
    [2] Lu J L, Cheng G G, Tan B, et al. Effect of Zr, Al addition on characteristics of MnS and formation of intragranular ferrite in non-quenched and tempered steel. ISIJ Int, 2018, 58(5): 921 doi: 10.2355/isijinternational.ISIJINT-2017-617
    [3] Wan X L, Wu K M, Huang G, et al. In situ observations of the formation of fine-grained mixed microstructures of acicular ferrite and bainite in the simulated coarse-grained heated-affected zone. Steel Res Int, 2014, 85(2): 243 doi: 10.1002/srin.201200313
    [4] Genichi S. Progress of high performance steel plates with excellent HAZ toughness. Nippon Steel Sumitomo Met Techl Rep, 2018, 119: 22
    [5] Kazuhiro F, Ken-ichi Y, Yasuhiro S, et al. High strength TMCP steel plate for offshore structure with excellent HAZ toughness at welded joints. Nippon Steel Sumitomo Met Techl Rep, 2015, 110: 43
    [6] Nakashima K, Hase K, Endo S, et al. Development of YP390MPa steel plate for shipbuilding with superior low temperature toughness for large heat input welding // The Twenty-fourth International Ocean and Polar Engineering Conference. Busan, 2014: ISOPE-I-14-569
    [7] Ichimiya K, Hase K, Endo S, et al. Offshore structural steel plates for extreme low temperature service with excellent HAZ toughness // Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, 2014: V005T03A027
    [8] Ichimiya K, Hase K, Endo S, et al. Steel plates with excellent HAZ toughness for offshore structure // Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes, 2013: V003T03A021
    [9] Kato T, Sato S, Ohta H, et al. Effects of Ca addition on formation behavior of TiN particles and HAZ toughness in large-heat-input welding. Kobelco Technol Rev, 2011, 30: 76
    [10] Chen X, Bu Y, Xi T H. Progress on research and development of large heat input welding steel series in WISCO. Mater China, 2011, 30(12): 34

    陳曉, 卜勇, 習天輝. 武鋼大線能量焊接系列鋼的研發進展. 中國材料進展, 2011, 30(12):34
    [11] Xu L Y, Yang J, Wang R Z, et al. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding. J Iron Steel Res Int, 2018, 25(4): 433 doi: 10.1007/s42243-018-0054-y
    [12] Shi M H, Yuan X G, Huang H J, et al. Effect of Zr addition on the microstructure and toughness of coarse-grained heat-affected zone with high-heat input welding thermal cycle in low-carbon steel. J Mater Eng Perform, 2017, 26(7): 3160 doi: 10.1007/s11665-017-2758-8
    [13] Xu L Y, Yang J, Wang R Z, et al. Effect of welding heat input on microstructure and toughness of heated-affected zone in steel plate with Mg deoxidation. Steel Res Int, 2017, 88(12): 1700157 doi: 10.1002/srin.201700157
    [14] Pan F, Zhang J, Chen H L, et al. Effects of rare earth metals on steel microstructures. Materials, 2016, 9(6): 417 doi: 10.3390/ma9060417
    [15] Xin W B, Song B, Song M M, et al. Effect of cerium on characteristic of inclusions and grain boundary segregation of arsenic in iron melts. Steel Res Int, 2015, 86(12): 1430 doi: 10.1002/srin.201400332
    [16] Liu H L, Liu C J, Jiang M F. Effect of rare earths on impact toughness of a low-carbon steel. Mater Des, 2012, 33: 306 doi: 10.1016/j.matdes.2011.06.042
    [17] Chang L Z, Gao G, Zheng F Z, et al. Effect of rare earth and magnesium complex treatment on inclusions in GCr15 bearing steel. Chin J Eng, 2019, 41(6): 763

    常立忠, 高崗, 鄭福舟, 等. 稀土-鎂復合處理對GCr15軸承鋼中夾雜物的影響. 工程科學學報, 2019, 41(6):763
    [18] Thewlis G. Effect of cerium sulphide particle dispersions on acicular ferrite microstructure development in steels. Mater Sci Technol, 2006, 22(2): 153 doi: 10.1179/026708306X81432
    [19] Yu S F, Yan N, Chen Y. Inclusions and microstructure of Ce-added weld metal coarse grain heat-affected zone in twin-wire submerged-arc welding. J Mater Eng Perform, 2016, 25(6): 2445 doi: 10.1007/s11665-016-2069-5
    [20] Yan H H, Hu Y, Zhao D W. The influence of rare earth elements on phase transformation in 25Mn steel during continuous heating. Metall Mater Trans A, 2018, 49(11): 5271 doi: 10.1007/s11661-018-4891-x
    [21] Li Y D, Liu C J, Li C L, et al. A coupled thermodynamic model for prediction of inclusions precipitation during solidification of heat-resistant steel containing cerium. J Iron Steel Res Int, 2015, 22(6): 457 doi: 10.1016/S1006-706X(15)30027-3
    [22] Lin Q, Ye W, Li S L. Rare earth dissolved in solid solution of steel and its effect micro structures. J Chin Soc Rare Earths, 1989, 7(2): 54 doi: 10.3321/j.issn:1000-4343.1989.02.012

    林勤, 葉文, 李栓祿. 鋼中稀土固溶規律及作用研究. 中國稀土學報, 1989, 7(2):54 doi: 10.3321/j.issn:1000-4343.1989.02.012
    [23] Gao J Z, Fu P X, Liu H W, et al. Effects of rare earth on the microstructure and impact toughness of H13 steel. Metals, 2015, 5(1): 383 doi: 10.3390/met5010383
    [24] Zhao W X, Wu Y, Jiang S H, et al. Micro-alloying effects of yttrium on recrystallization behavior of an alumina-forming austenitic stainless steel. J Iron Steel Res Int, 2016, 23(6): 553 doi: 10.1016/S1006-706X(16)30087-5
    [25] Tomita Y. Effect of microstructure on plane-strain fracture toughness of AISI 4340 steel. Metall Mater Trans A, 1988, 19(10): 2513 doi: 10.1007/BF02645479
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  1602
  • HTML全文瀏覽量:  737
  • PDF下載量:  87
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-11-21
  • 刊出日期:  2020-11-25

目錄

    /

    返回文章
    返回