Influence of product flow rate on O2 volume fraction in PSA oxygen generation process
-
摘要: 為了提高小型兩床變壓吸附(PSA)制氧機在變產品氣流量下的氧氣體積分數,建立了改進的Skarstrom兩床循環PSA制氧實驗裝置,研究了產品氣流量對其氧氣體積分數的影響。研究結果表明,在低產品氣流量運行條件下,通過提高清洗氣總氧量與原料氣總氧量之比(P/F)以及降低最高吸附壓力與最低解吸壓力之比(θ)可消除氧氣返混的不利影響;在高產品氣流量運行條件下,通過提高P/F和θ可以提高實驗裝置中分子篩的工作能力,進而提高產品氣中的氧氣體積分數。在此基礎上,對低和高產品氣流量運行條件下的P/F和θ進行了調節,分別將產品氣流量為3.55 L·min?1和19.88 L·min?1時的氧氣體積分數從92.4%增加至了95.7%和從74.0%增加至了74.9%。本文的研究結果可為變產品氣流量下PSA制氧工藝參數優化提供參考。Abstract: In recent decades, the small-scale pressure swing adsorption (PSA) oxygen generator has been widely used in the fields of home medical and hospital oxygen supply, anoxic environments, and plateau environments due to its cost effectiveness, operational flexibility, and adequate O2 volume fraction. The flexible optimization of PSA oxygen generation in response to changes in product demand is an important factor in its practical performance. To study the influence of a variable product flow rate on O2 volume fraction in the small-scale PSA oxygen generator, experimental equipment was set up, which consisted of a modified Skarstrom-cycle two-bed PSA system. The research results show that variations in the parameters at the lower product flow rate (≤10.37 L·min?1) may have a negative effect on oxygen countercurrent mixing, which can impair oxygen generation, and at higher product flow rates (≥13.57 L·min?1) may cause the negative effect of nitrogen breakthrough, which decreases the working capacity of the adsorbents in the bed. The O2 volume fraction at the lower product flow rate was improved by increasing the ratio of total oxygen in the purge gas to the total oxygen in the feed gas (P/F) and by decreasing the ratio of the highest adsorption pressure to the lowest desorption pressure (θ) during a cycle to suppress oxygen countercurrent mixing. The O2 volume fraction at the higher product flow rate was improved by increasing the P/F and θ values to improve the working capacity of the adsorbents in the bed. Accordingly, adjustments are made in the P/F and θ values at the lower and higher product flow rates to achieve optimal oxygen generation performances, enhancing the O2 volume fraction from 92.4% and 74.0% to 95.7% and 74.9% at the respective product flow rates of 3.55 L·min?1 and 19.88 L·min?1. This work is meaningful for the optimization of the parameters of the PSA oxygen production process at variable product flow rates.
-
圖 1 實驗裝置原理圖
Figure 1. Schematic of pressure swing adsorption (PSA) experimental setup
1—Filter; 2—Air compressor; 3—Heat exchanger; 4—Buffer tank; 5—Needle valves (K1−K4); 6—Relief valve; 7—Mass flowmeters (F1, F2, F3); 8—Solenoid valves (E1−E8); 9—Adsorption beds (B1, B2); 10—Pressure transducers (P1, P2); 11—O2 concentration detection ports (C1, C2, C3); 12—Check valve; 13—O2 storage tank; 14—Pressure maintaining valve; 15—PLC;16—Computer
表 1 床層及有關管道尺寸
Table 1. Adsorption bed and related pipe sizes
Items Size/mm Diameter of adsorption bed 112.00 Column length of adsorption bed 620.00 Diameters of main pipe 19.05 Diameters of pressure equalization and purge pipe 12.70 表 2 吸附劑參數
Table 2. Adsorbent quantities and properties
Items Size Mass of oxygen molecular sieve 2.70±0.01 kg(one bed) Mass of activated alumina 0.76±0.01 kg(one bed) Average diameter of oxygen molecular sieve ~0.50 mm Average diameter of activated alumina ~4.00 mm Bulk density of oxygen molecular sieve 670.00 kg·m?3 Bulk density of activated alumina 700.00 kg·m?3 表 3 PSA工藝步驟
Table 3. PSA cycle design at each step
Items Duration/s B1 B2 Items Duration/s B1 B2 Step 1 0.5 PPE&FP DPE Step 5 0.5 DPE PPE&FP Step 2 5 FP BD Step 6 5 BD FP Step 3 7 AD DP Step 7 7 DP AD Step 4 5 AD&PG PG Step 8 5 PG AD&PG 表 4 P/F和θ隨產品氣流量增加的變化范圍
Table 4. Ranges of variations of P/F and θ with product flow rate
Experiment P/F θ A 1.33–0.74 3.29–3.10 B 0.65–0.49 3.55–3.33 表 5 實驗B和C工藝參數的對比
Table 5. Comparison of process parameters in experiments B and C
Product flow rates conditions Product flow rate/ (L·min?1) P/F θ Experiment B Experiment C Experiment B Experiment C Lower product flow rates 3.55 0.65 1.34 3.55 3.24 7.18 0.66 1.14 3.52 3.26 10.37 0.65 0.68 3.47 3.42 Higher product flow rates 13.57 0.64 0.65 3.44 3.42 16.73 0.57 0.58 3.40 3.39 19.88 0.49 0.51 3.33 3.36 www.77susu.com -
參考文獻
[1] Yang X, Epiepang F E, Li J B, et al. Sr-LSX zeolite for air separation. Chem Eng J, 2019, 362: 482 doi: 10.1016/j.cej.2019.01.066 [2] Ran Z, Luo Y J. Research progress on oxygen production and supply technology and rational use of oxygen in plateau. People’s Military Surgeon, 2019, 62(5): 466冉莊, 羅勇軍. 高原制氧供氧技術及合理用氧研究進展. 人民軍醫, 2019, 62(5):466 [3] Liu Y S, Zhu X Q, Cao Y Z, et al. Flow characteristics and oxygen-enriched effect of oxygen diffusion. Chin J Eng, 2015, 37(10): 1370劉應書, 祝顯強, 曹永正, 等. 彌散供氧流動特性及其富氧效果. 工程科學學報, 2015, 37(10):1370 [4] Yang X, Wang H Y, Chen J W, et al. Two-dimensional modeling of pressure swing adsorption (PSA) oxygen generation with radial-flow adsorber. Appl Sci, 2019, 9(6): 1153 doi: 10.3390/app9061153 [5] Wang Y Y, An Y X, Ding Z Y, et al. Integrated VPSA processes for air separation based on dual reflux configuration. Ind Eng Chem Res, 2019, 58: 6562 [6] Wang H Y, Liu Y S, Shi S S, et al. Influence of the structure of radial flow adsorbers on oxygen production with pressure swing adsorption. Chin J Eng, 2015, 37(2): 238王浩宇, 劉應書, 施紹松, 等. 徑向流吸附器內部結構對變壓吸附制氧效果的影響. 工程科學學報, 2015, 37(2):238 [7] Mendes A M M, Costa C A V, Rodrigues A E. Oxygen separation from air by PSA: modelling and experimental results Part I: isothermal operation. Sep Purif Technol, 2001, 24(1-2): 173 doi: 10.1016/S1383-5866(00)00227-6 [8] Lü A H, Deng C, Zhu M F, et al. Study on the process of small-scale PSA oxygen generation. Appl Chem Ind, 2018, 47(3): 481 doi: 10.3969/j.issn.1671-3206.2018.03.015呂愛會, 鄧橙, 朱孟府, 等. 小型變壓吸附制氧工藝技術研究. 應用化工, 2018, 47(3):481 doi: 10.3969/j.issn.1671-3206.2018.03.015 [9] Farooq S, Ruthven D M, Boniface H A. Numerical simulation of a pressure swing adsorption oxygen unit. Chem Eng Sci, 1989, 44(12): 2809 doi: 10.1016/0009-2509(89)85090-0 [10] Zhai H, Liu Y S, Zhang H, et al. Experimental study on vacuum-desorption of small-scale oxygen concentrator by pressure swing adsorption. Chem Ind Eng Prog, 2008, 27(7): 1061 doi: 10.3321/j.issn:1000-6613.2008.07.020翟暉, 劉應書, 張輝, 等. 小型變壓吸附制氧的真空解吸實驗. 化工進展, 2008, 27(7):1061 doi: 10.3321/j.issn:1000-6613.2008.07.020 [11] Bhat A A, Mang H, Rajkumar S, et al. On-board oxygen generation using high performance molecular sieve. Life Sci J, 2017, 2(4): 380 [12] Zhang X B, Liu Y S, Liu W H, et al. Experiment study on a multicolumn PSA oxygen system. Cryogenics, 2009(2): 43 doi: 10.3969/j.issn.1000-6516.2009.02.010章新波, 劉應書, 劉文海, 等. 多塔變壓吸附制氧技術實驗. 低溫工程, 2009(2):43 doi: 10.3969/j.issn.1000-6516.2009.02.010 [13] Liow J L, Kenney C N. The backfill cycle of the pressure swing adsorption process. AIChE J, 1990, 36(1): 53 doi: 10.1002/aic.690360108 [14] Mofarahi M, Towfighi J, Fathi L. Oxygen separation from air by four-bed pressure swing adsorption. Ind Eng Chem Res, 2009, 48(11): 5439 doi: 10.1021/ie801805k [15] Lü A H, Deng C, Zhu M F, et al. Analyzing the PSA process of oxygen generation in plateau environment using response surface method. Appl Chem Ind, 2018, 47(6): 1175 doi: 10.3969/j.issn.1671-3206.2018.06.024呂愛會, 鄧橙, 朱孟府, 等. 響應面法分析高原環境變壓吸附制氧工藝的研究. 應用化工, 2018, 47(6):1175 doi: 10.3969/j.issn.1671-3206.2018.06.024 [16] Tian C X, Fu Q, Ding Z Y, et al. Experiment and simulation study of a dual-reflux pressure swing adsorption process for separating N2/O2. Sep Purif Technol, 2017, 189: 54 doi: 10.1016/j.seppur.2017.06.041 [17] Rege S U, Yang R T. Limits for air separation by adsorption with LiX zeolite. Ind Eng Chem Res, 1997, 36(12): 5358 doi: 10.1021/ie9705214 [18] Reynolds S P, Ebner A D, Ritter J A. Enriching PSA cycle for the production of nitrogen from air. Ind Eng Chem Res, 2006, 45(9): 3256 doi: 10.1021/ie0513550 [19] Tian T, Liu B, Shi M S, et al. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds. CIESC J, 2019, 70(3): 969田濤, 劉冰, 石梅生, 等. 雙塔微型變壓吸附制氧機實驗和模擬. 化工學報, 2019, 70(3):969 [20] Serbezov A. Effect of the process parameters on the length of the mass transfer zone during product withdrawal in pressure swing adsorption cycles. Chem Eng Sci, 2001, 56(15): 4673 doi: 10.1016/S0009-2509(01)00121-X [21] Tondeur D, Chlendi M. Front analysis and cycle policy in PSA operations. Gas Sep Purif, 1993, 7(2): 105 doi: 10.1016/0950-4214(93)85007-I [22] Mohammadi N, Hossain M I, Ebner A D, et al. New pressure swing adsorption cycle schedules for producing high-purity oxygen using carbon molecular sieve. Ind Eng Chem Res, 2016, 55(40): 10758 doi: 10.1021/acs.iecr.6b02570 [23] Wang H Y, Liu Y S, Zhang C Z, et al. Study on variable mass flow laws in π-shaped centripetal radial flow adsorber. CIESC J, 2019, 70(9): 3385王浩宇, 劉應書, 張傳釗, 等. π型向心徑向流吸附器變質量流動特性研究. 化工學報, 2019, 70(9):3385 -