-
摘要: 通過熱處理制備出具有回火馬氏體組織、下貝氏體組織以及粒狀貝氏體組織的718鋼,利用光學顯微鏡、掃描電子顯微鏡、X射線衍射儀、萬能拉伸實驗機比較其顯微組織及力學性能。同時借助高速銑削實驗及光學輪廓儀,研究力學性能以及組織結構對切削性能的影響。結果表明,當切削速度低于145 m·min?1時,貝氏體組織類型比回火馬氏體組織更易切削,切削貝氏體組織比切削回火馬氏體組織的刀具使用壽命高30%~40%。當切削速度高于165 m·min?1時,馬氏體組織發生了加工軟化現象,刀具使用壽命提高,切削性能上升。粒狀貝氏體組織加工表面因為嚴重的刀具黏附而出現背脊紋路,馬氏體組織具有最佳的切削表面粗糙度。綜合考慮之下,三種組織的綜合切削性能從高到低排序為:下貝氏體組織、馬氏體組織、粒狀貝氏體組織,采用300 ℃等溫淬火工藝可以有效提升718塑料模具鋼的綜合切削性能。Abstract: Owing to strict dimension accuracy demands, pre-hardening treatment has been widely used in the mold for production of large plastic parts. However, the large volume of mold leads to the existence of tempered martensite and bainite structure on the cross section by pre-hardened heat treatment, and the uneven structure makes great influences on the cutting performance of the pre-hardening plastic mold steel. For service materials, machinability is affected by strength, work temperature, cutting conditions, plastic deformation, phase. Pioneering researchers tended to focus on the influences of temperature, cutting conditions and little is known about the effect of different microstructures in same materials. In this work, 718 steels with tempered martensite, lower bainite and grain bainite structures were prepared by heat treatment. The microstructures and mechanical properties were characterized by optical microscopy, scanning electron microscopy, X-ray diffractometer and universal tensile testing machine. Meanwhile, the effects of mechanical properties and structure on processing properties were studied by high-speed milling experiments and optical profilometer. The results show that when the cutting speed was lower than 145 m·min?1, the bainite was easier to cut than tempered martensite, and the life of tool cutting for bainite was 30%?40% higher than life of tool cutting for tempered martensite. When the cutting speed was higher than 165 m·min?1, tempered martensite microstructure worked softening and the life of tool cutting for it increased, moreover, its workability advanced. The ridges were observed on the milling surface of grain bainite because of severe tool adhesion and tempered martensite structure has the best milling surface roughness. Under consideration, the comprehensive machinability of the three kinds of microstructure are ranked from high to low: lower bainite structure, martensite structure and granular bainite structure. The adoption of 300 ℃ austempering process can effectively improve the synthesis cutting performance of 718 plastic die steel.
-
Key words:
- microstructure /
- mechanical properties /
- work hardening /
- tool life /
- surface roughness
-
表 1 718鋼的化學成分(質量分數)
Table 1. Chemical composition of 718 steels
% C Si Mn P S Cr Ni Mo V Fe 0.40 0.28 1.28 0.015 0.003 1.82 0.99 0.33 0.09 Bal. 表 2 機加工參數
Table 2. Cutting conditions
Cutting speed, Vc / (m·min–1) 125,145,165 Feed per tooth, fz / (mm·z–1) 0.075 Cutting width, ae / mm 1.0 Cutting depth, ap / mm 1.0 Cooling method Air cooling Note: z represents a tooth on the milling cutter. 表 3 三種試樣的力學性能及殘余奧氏體含量
Table 3. Mechanical properties and retained austenite of three samples
Samples Yield strength/ MPa Tensile strength/ MPa Elongation /% Section shrinkage / % Hardness, HRC Residual austenite content / % Low bainite 1145 1192 12.6 52.0 36 5.8 Grain bainite 986 1010 14.3 57.6 35 7.1 Tempered martensite 1210 1280 13.2 54.1 35 3.3 www.77susu.com -
參考文獻
[1] Min Y A, Yang Y P, Zhang Z, et al. Study on machinability of pre-hardened plastic mould steel. Adv Mater Res, 2013, 690-693: 2501 doi: 10.4028/www.scientific.net/AMR.690-693.2501 [2] Hoseiny H, Caballero F G, Hogman B, et al. The effect of the martensitic packet size on the machinability of modified AISI P20 prehardened mold steel. J Mater Sci, 2012, 47(8): 3613 doi: 10.1007/s10853-011-6208-y [3] Cao Y J, Sun J Q, Ma F, et al. Effect of the microstructure and residual stress on tribological behavior of induction hardened GCr15 steel. Tribol Int, 2017, 115: 108 doi: 10.1016/j.triboint.2017.05.028 [4] Nomani J, Pramanik A, Hilditch T, et al. Chip formation mechanism and machinability of wrought duplex stainless steel alloys. Int J Adv Manuf Technol, 2015, 80: 1127 doi: 10.1007/s00170-015-7113-3 [5] Hoseiny H, HoGman B, Andrén H, et al. The influence of microstructure and mechanical properties on the machinability of martensitic and bainitic prehardened mould steels. Int J Mater Res, 2013, 104(8): 748 doi: 10.3139/146.110926 [6] Zhang S H. Study on 1CrMn2MoVTiB Non-Quenched and Tempered Plastic Mould Steel[Dissertation]. Shenyang: Northeastern University, 2010章順虎. 1CrMn2MoVTiB非調質塑料模具鋼使用性能的研究[學位論文]. 沈陽: 東北大學, 2010 [7] Hoseiny H, H?gman B, Klement U, et al. Machinability evaluation of pre-hardened plastic mould steels. Int J Machin Machinab Mater, 2012, 11(4): 327 [8] Huang W M, Zhao J, Niu J T, et al. Comparison in surface integrity and fatigue performance for hardened steel ball-end milled with different milling speeds. Procedia CIRP, 2018, 71: 267 doi: 10.1016/j.procir.2018.05.059 [9] Xavior M A, Manohar M, Madhukar P M, et al. Experimental investigation of work hardening, residual stress and microstructure during machining Inconel 718. J Mech Sci Technol, 2017, 31(10): 4789 doi: 10.1007/s12206-017-0926-2 [10] Garcia-Mateo C, Peet M, Caballero F G, et al. Tempering of hard mixture of bainitic ferrite and austenite. Mater Sci Technol, 2004, 20(7): 814 doi: 10.1179/026708304225017355 [11] Zhang Z, Wu X C, Zhou Q, et al. Effect of microstructure on the impact toughness of a bainitic steel bloom for large plastic molds. Int J Miner Metall Mater, 2015, 22(8): 842 doi: 10.1007/s12613-015-1141-8 [12] Fujita N, Ishikawa N, Roters F, et al. Experimental–numerical study on strain and stress partitioning in bainitic steels with martensite–austenite constituents. Int J Plast, 2018, 104: 39 doi: 10.1016/j.ijplas.2018.01.012 [13] Zhang C, Guo H, Wang J X, et al. Effect of austempering temperature on the microstructure and wear resistance of ultrafine bainitic steel. Chin J Eng, 2018, 40(12): 1502張超, 郭輝, 王家星, 等. 等溫淬火溫度對超細貝氏體鋼組織及耐磨性的影響. 工程科學學報, 2018, 40(12):1502 [14] Li S, Shi Y L, Yang X C, et al. Microstructural evolution of Mo–W–V alloyed hot-work die steel during high-temperature tempering. Chin J Eng, 2020, 42(7): 902李爽, 時彥林, 楊曉彩, 等. 鉬鎢釩合金化熱作模具鋼高溫回火組織演變. 工程科學學報, 2020, 42(7):902 [15] Liu H H, Fu P X, Liu H W, et al. Microstructure evolution and mechanical properties in 718H pre-hardened mold steel during tempering. Mater Sci Eng A, 2017, 709: 181 [16] Lu X H, Lu Y J, Wang F R, et al. Research on work hardening of micro-milling nickel-based superalloy. Modular Mach Tool Autom Manuf Tech, 2016(7): 4盧曉紅, 路彥君, 王福瑞, 等. 鎳基高溫合金Inconel718微銑削加工硬化研究. 組合機床與自動化加工技術, 2016(7):4 [17] Zhang K L. Analysis and reduction measures on surface roughness of turning parts. Coal Mine Mach, 2013, 34(5): 166張坤領. 車削零件表面粗糙度成因分析及降低措施. 煤礦機械, 2013, 34(5):166 [18] Liu Y M. Deformation dislocation structure and strength of structural steels. J Iron Steel Res, 2007, 19(4): 1 doi: 10.3321/j.issn:1001-0963.2007.04.001劉禹門. 結構鋼的形變位錯結構和強度. 鋼鐵研究學報, 2007, 19(4):1 doi: 10.3321/j.issn:1001-0963.2007.04.001 [19] Huang Y, Cheng G G, Bao Dao H. Current status of the characteristics and control of primary carbides in H13 steel. Chin J Eng. doi: 10.13374/j.issn2095-9389.2020.05.24.002黃宇, 成國光, 鮑道華. H13鋼中一次碳化物的特征及控制進展. 工程科學學報. doi: 10.13374/j.issn2095-9389.2020.05.24.002 [20] Sabzi H E, Hanzaki A Z, Abedi H R, et al. The effects of bimodal grain size distributions on the work hardening behavior of a transformation-twinning induced plasticity steel. Mater Sci Eng A, 2016, 678: 23 doi: 10.1016/j.msea.2016.09.085 [21] Abukhshim N A, Mativenga P T, Sheikh M A. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. Int J Mach Tools Manuf, 2006, 46(7-8): 782 doi: 10.1016/j.ijmachtools.2005.07.024 [22] Zheng G M, Xu R F, Cheng X, et al. Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M. Measurement, 2018, 125: 99 doi: 10.1016/j.measurement.2018.04.078 [23] Suresh R, Basavarajappa S, Samuel G L. Some studies on hard turning of AISI 4340 steel using multilayer coated carbide tool. Measurement, 2012, 45(7): 1872 doi: 10.1016/j.measurement.2012.03.024 [24] Zhan G, He L, Jiang H W, et al. Performance comparison and prediction of cutting energy of new cemented carbide micro-pit turning tool. Chin J Eng, 2017, 39(8): 1207占剛, 何林, 蔣宏婉, 等. 新型硬質合金微坑車刀切削能對比研究與預測. 工程科學學報, 2017, 39(8):1207 [25] Oliaei S N B, Karpat Y. Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V. J Mater Process Technol, 2016, 235: 28 doi: 10.1016/j.jmatprotec.2016.04.010 -