[1] |
Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. <italic>Chin J Eng</italic>, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
|
[2] |
Qi C C, Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. <italic>Miner Eng</italic>, 2019, 144: 106025 doi: 10.1016/j.mineng.2019.106025
|
[3] |
Tan C K, Setiawan R, Bao J, et al. Studies on parameter estimation and model predictive control of paste thickeners. <italic>J Process Control</italic>, 2015, 28: 1 doi: 10.1016/j.jprocont.2015.02.002
|
[4] |
Arjmand R, Massinaei M, Behnamfard A. Improving flocculation and dewatering performance of iron tailings thickeners. <italic>J Water Process Eng</italic>, 2019, 31: 100873 doi: 10.1016/j.jwpe.2019.100873
|
[5] |
Jiao H Z, Wang S F, Yang Y X, et al. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. <italic>J Clean Prod</italic>, 2020, 245: 118882 doi: 10.1016/j.jclepro.2019.118882
|
[6] |
Tanguay M, Fawell P, Adkins S. Modelling the impact of two different flocculants on the performance of a thickener feedwell. <italic>Appl Math Model</italic>, 2014, 38(17-18): 4262 doi: 10.1016/j.apm.2014.04.047
|
[7] |
Zhang Q L, Wang S, Wang X M. Influence rules of unit consumptions of flocculants on interface sedimentation velocity of unclassified tailings slurry. <italic>Chin J Nonferrous Met</italic>, 2017, 27(2): 318張欽禮, 王石, 王新民. 絮凝劑單耗對全尾砂漿渾液面沉速的影響規律. 中國有色金屬學報, 2017, 27(2):318
|
[8] |
Wang Y, Wu A X, Wang H J, et al. Influence mechanism of flocculant dosage on tailings thickening. <italic>J Univ Sci Technol Beijing</italic>, 2013, 35(11): 1419王勇, 吳愛祥, 王洪江, 等. 絮凝劑用量對尾礦濃密的影響機理. 北京科技大學學報, 2013, 35(11):1419
|
[9] |
Jiao H Z, Wang H J, Wu A X, et al. Rule and mechanism of flocculation sedimentation of unclassified tailings. <italic>J Univ Sci Technol Beijing</italic>, 2010, 32(6): 702焦華喆, 王洪江, 吳愛祥, 等. 全尾砂絮凝沉降規律及其機理. 北京科技大學學報, 2010, 32(6):702
|
[10] |
Wu A X, Zhou J, Yin S H, et al. Influence factors on flocculation sedimentation of unclassified tailings. <italic>Chin J Nonferrous Met</italic>, 2016, 26(2): 439吳愛祥, 周靚, 尹升華, 等. 全尾砂絮凝沉降的影響因素. 中國有色金屬學報, 2016, 26(2):439
|
[11] |
Nguyen T P, Hankins N P, Hilal N. Effect of chemical composition on the flocculation dynamics of latex-based synthetic activated sludge. <italic>J Hazard Mater</italic>, 2007, 139(2): 265 doi: 10.1016/j.jhazmat.2006.06.025
|
[12] |
Botha L, Soares J B P. The influence of tailings composition on flocculation. <italic>Can J Chem Eng</italic>, 2015, 93(9): 1514 doi: 10.1002/cjce.22241
|
[13] |
Li S L, Gao L H, Cao Y J, et al. Effect of pH on the flocculation behaviors of kaolin using a pH-sensitive copolymer. <italic>Water Sci Technol</italic>, 2016, 74(3): 729 doi: 10.2166/wst.2016.266
|
[14] |
Konduri M K R, Fatehi P. Influence of pH and ionic strength on flocculation of clay suspensions with cationic xylan copolymer. <italic>Colloid Surf A</italic>, 2017, 530: 20 doi: 10.1016/j.colsurfa.2017.07.045
|
[15] |
Carissimi E, Rubio J. Polymer-bridging flocculation performance using turbulent pipe flow. <italic>Miner Eng</italic>, 2015, 70: 20 doi: 10.1016/j.mineng.2014.08.019
|
[16] |
Wu A X, Ruan Z E, Wang J D, et al. Optimizing the flocculation behavior of ultrafine tailings by ultra-flocculation. <italic>Chin J Eng</italic>, 2019, 41(8): 981吳愛祥, 阮竹恩, 王建棟, 等. 基于超級絮凝的超細尾砂絮凝行為優化. 工程科學學報, 2019, 41(8):981
|
[17] |
Nguyen T V, Farrow J B, Smith J, et al. Design and development of a novel thickener feedwell using computational fluid dynamics. <italic>J S Afr Inst Min Metall</italic>, 2012, 112(11): 939
|
[18] |
Gheshlaghi M E, Goharrizi A S, Shahrivar A A, et al. Modeling industrial thickener using computational fluid dynamics (CFD), a case study: Tailing thickener in the Sarcheshmeh copper mine. <italic>Int J Min Sci Technol</italic>, 2013, 23(6): 885 doi: 10.1016/j.ijmst.2013.11.002
|
[19] |
Ruan Z E, Li C P, Shi C. Numerical simulation of flocculation and settling behavior of whole-tailings particles in deep-cone thickener. <italic>J Cent South Univ</italic>, 2016, 23(3): 740 doi: 10.1007/s11771-016-3119-8
|
[20] |
Liang L, Peng Y L, Tan J K, et al. A review of the modern characterization techniques for flocs in mineral processing. <italic>Miner Eng</italic>, 2015, 84: 130 doi: 10.1016/j.mineng.2015.10.011
|
[21] |
Blanco A, Fuente E, Negro C, et al. Flocculation monitoring: focused beam reflectance measurement as a measurement tool. <italic>Can J Chem Eng</italic>, 2002, 80(4): 1
|
[22] |
Senaputra A, Jones F, Fawell P D, et al. Focused beam reflectance measurement for monitoring the extent and efficiency of flocculation in mineral systems. <italic>AIChE J</italic>, 2014, 60(1): 251 doi: 10.1002/aic.14256
|
[23] |
Heath A R, Fawell P D, Bahri P A, et al. Estimating average particle size by focused beam reflectance measurement (FBRM). <italic>Part Part Syst Charact</italic>, 2002, 19(2): 84 doi: 10.1002/1521-4117(200205)19:2<84::AID-PPSC84>3.0.CO;2-1
|
[24] |
Spicer P T, Keller W, Pratsinis S E. The effect of impeller type on floc size and structure during shear-induced flocculation. <italic>J Colloid Interface Sci</italic>, 1996, 184(1): 112 doi: 10.1006/jcis.1996.0601
|
[25] |
Mietta F, Chassagne C, Winterwerp J C. Shear-induced flocculation of a suspension of kaolinite as function of pH and salt concentration. <italic>J Colloid Interface Sci</italic>, 2009, 336(1): 134 doi: 10.1016/j.jcis.2009.03.044
|
[26] |
Hasan A, Fatehi P. Cationic kraft lignin-acrylamide as a flocculant for clay suspensions: 1) molecular weight effect. <italic>Sep Purif Technol</italic>, 2018, 207: 213 doi: 10.1016/j.seppur.2018.06.047
|
[27] |
Dwari R K, Angadi S I, Tripathy S K. Studies on flocculation characteristics of chromite’s ore process tailing: Effect of flocculants ionicity and molecular mass. <italic>Colloid Surf A</italic>, 2018, 537: 467 doi: 10.1016/j.colsurfa.2017.10.069
|
[28] |
Kinoshita T, Nakaishi K, Kuroda Y. Determination of kaolinite floc size and structure using interface settling velocity. <italic>Appl Clay Sci</italic>, 2017, 148: 11 doi: 10.1016/j.clay.2017.07.024
|
[29] |
Zhang Y Q, Gao W J, Fatehi P. Structure and settling performance of aluminum oxide and poly (acrylic acid) flocs in suspension systems. <italic>Sep Purif Technol</italic>, 2019, 215: 115 doi: 10.1016/j.seppur.2019.01.012
|