Status and prospects of researches on rheology of paste backfill using unclassified-tailings (Part 1): concepts, characteristics and models
-
摘要: 膏體充填為礦產資源的深部開采及可持續發展提供了安全、綠色、高效的技術保障,已成為礦業領域的研究熱點和發展趨勢之一。全尾砂膏體流變學是膏體充填全套工藝流程的重要理論基礎,深刻影響著膏體充填技術的發展。本文從膏體的內涵出發,系統性地論述了膏體流變學研究的必要性、特殊性及復雜性。并以膏體流變實驗結果為基礎,分析了全尾砂膏體的典型流變特性及最新研究成果。總結了常用的屈服型非牛頓流體流變模型,并探討了常用流變本構方程對膏體料漿的適用性,對其實際應用提出合理建議。同時對膏體流變特性的關鍵影響因素進行了概述。根據膏體流變學的研究現狀,歸納總結并提出了膏體流變學研究的重點與難點,指出現階段膏體流變學須從測試標準、本構方程、微觀機理及工程應用等方面深入研究。Abstract: The cemented paste backfill (CPB) technology provides a safe, green and efficient access to deep underground mining and sustainable exploitation of mineral resources, and it has become one of the research focuses and development trends in the mining field. The CPB technology mainly includes four key processes, namely, the thickening of unclassified tailings, homogeneous mixing of multi-scale materials, pipeline transportation of fresh CPB, and its consolidation in the mined-out underground stopes. As a relatively new material that is comprised of various constituents, typically the tailings, cement, and water, as well as a high solid concentration, CPB tends to show complicated behaviors under the effects of surroundings. Therefore, understanding CPB behaviors is of practical significance for the development of the technology, since knowledge of CPB behavior is essential in the preliminary backfill system design and operation. It has been pointed out that the use of solid-liquid two-phase flows shows some limitations for the paste. In comparison, the rheology which targets on the flow and deformation of the paste under the influence of external shearing can provide a theoretical basis for the whole processes of paste backfill technology and deeply affect its development. Based on the characteristics of the paste materials, the necessity, particularity and complexity of the research on paste rheology were systematically discussed. Typical rheological properties of paste and the latest achievements were analyzed with the summarized results from rheological experiments. The commonly used rheological models of yielding non-Newtonian fluids were reviewed, and the applicability of corresponding constitutive equations to paste slurry was discussed with reasonable suggestions provided for its practical application. Meanwhile, the key influence factors of paste rheological properties were summarized. According to the research status, the priorities and difficulties of research on paste rheology were summarized and proposed, with emphases on test standards, constitutive equations, microscopic mechanisms and engineering applications.
-
Key words:
- paste /
- rheology /
- unclassified tailings /
- rheological models /
- backfill mining /
- development trend
-
圖 1 典型的膏體剪切應力?時間曲線[33]
Figure 1. A typical shear stress?time curve of paste
圖 2 不同剪切作用下膏體細觀演變示意圖[37]
Figure 2. Changes in the microstructure of paste under different shear intensities
圖 3 觸變環實驗[24]
Figure 3. Thixotropic loops from experiments
圖 4 觸變性表征方法[24]。(a)應力松弛特征曲線;(b)屈服應力回歸
Figure 4. A method for thixotropy characterization: (a) stress relaxation curves; (b) yield stress regression
圖 7 膏體固態?流態轉變過程。(a)剪切應力曲線;(b)表觀黏度曲線[25]
Figure 7. Solid to liquid transitions of paste: (a) shear stress curves; (b) apparent viscosity curves
表 1 非牛頓流體常用流變模型
Table 1. A list of non-Newtonian rheological models
Name of models Equations Power-law[42] $\begin{array}{l} \tau {\rm{ = }}K{\left( {\dot \gamma } \right)^n} \\ n = 1,{\rm{ Newtonian}} \\ n > 1,{\rm{ Shear \;thickening}} \\ n < 1,{\rm{ Shear \;thinning}} \\ \end{array} $ (1) Bingham[43] $\begin{array}{*{20}{l}}{\dot \gamma = 0}&{\tau < {\tau _{\rm{y}}}}\\{\tau {\rm{ = }}{\tau _{\rm{y}}} + {\eta _{\rm{p}}}\dot \gamma}&{\tau \geqslant {\tau _{\rm{y}}}}\end{array}$ (2) Herschel and Bulkley $\begin{array}{*{20}{l}} {\tau {\rm{ = }}{\tau _{\rm{y}}} + K{\left( {\dot \gamma } \right)^n} }&{\tau > {\tau _{\rm{y}}}}\\ {\dot \gamma = 0 }&{\tau \leqslant {\tau _{\rm{y}}}} \end{array}$ (3) Casson[44] $\begin{array}{*{20}{l}} {\sqrt \tau {\rm{ = }}\sqrt {{\tau _{\rm{y}}}} + \sqrt {{\eta _{\rm{c}}}\dot \gamma }}&{\left( {\tau > {\tau _{\rm{y}}}} \right) \left( {{\rm{or }}\;\tau = {\tau _{\rm{y}}} + {\eta _{\rm{p}}}\dot \gamma + 2\sqrt {{\tau _{\rm{y}}}{\eta _{\rm{p}}}\dot \gamma } } \right)}\\ {\dot \gamma = 0}&{\left( {\tau \leqslant {\tau _{\rm{y}}}} \right) } \end{array} $ (4) Buckingham-Reiner[45] $\tau _{\rm{w}} \approx \dfrac{{\Delta PD}}{{4L}} $ (5a) $\tau_{\rm{w}} = {\eta _{\rm{p}}}\dfrac{{8v}}{D}{\left[ {1 - \dfrac{4}{3}\left( {{\tau _{\rm{y}}}\dfrac{{4L}}{{\Delta PD}}} \right) + \dfrac{1}{3}{{\left( {{\tau _{\rm{y}}}\dfrac{{4L}}{{\Delta PD}}} \right)}^4}} \right]^{ - 1}} $ (5b) $ {\tau _{\rm{w}}} \approx \dfrac{4}{3}{\tau _{\rm{y}}} + {\eta _{\rm{p}}}\left( {\dfrac{{8v}}{D}} \right), \;{\rm{for}} \;\tau \gg {\tau _{\rm{y}}} $ (5c) www.77susu.com -
參考文獻
[1] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417 [2] Gu H K. Engineering example of comprehensive utilization of tailings. Multipurpose Utilization Miner Resour, 2017(6): 93 doi: 10.3969/j.issn.1000-6532.2017.06.020谷泓坤. 尾砂綜合利用的工程實例. 礦產綜合利用, 2017(6):93 doi: 10.3969/j.issn.1000-6532.2017.06.020 [3] Liu H L, Wang W P, He C Y, et al. Present situation and development trend of goaf treatment technology in metal and non-metal underground mines. Mod Min, 2018(6): 1 doi: 10.3969/j.issn.1674-6082.2018.06.001劉海林, 汪為平, 何承堯, 等. 金屬非金屬地下礦山采空區治理技術現狀及發展趨勢. 現代礦業, 2018(6):1 doi: 10.3969/j.issn.1674-6082.2018.06.001 [4] Wu A X, Wang Y, Wang H J. Status and prospects of the paste backfill technology. Met Mine, 2016(7): 1 doi: 10.3969/j.issn.1001-1250.2016.07.001吳愛祥, 王勇, 王洪江. 膏體充填技術現狀及趨勢. 金屬礦山, 2016(7):1 doi: 10.3969/j.issn.1001-1250.2016.07.001 [5] Landriault D A, Verburg R, Cincilla W, et al. Paste technology for underground backfill and surface tailings disposal applications // Short Course Notes, Canadian Institute of Mining and Metallurgy. Vancouver, 1997: 120 [6] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517 [7] Yang B H, Li C P, Wu A X, et al. Analysis on influencing factors of coarse particles migration in pipeline transportation of paste slurry. Chin J Nonferrous Met, 2018, 28(10): 2143 doi: 10.1016/S1003-6326(18)64859-9顏丙恒, 李翠平, 吳愛祥, 等. 膏體料漿管道輸送中粗顆粒遷移的影響因素分析. 中國有色金屬學報, 2018, 28(10):2143 doi: 10.1016/S1003-6326(18)64859-9 [8] Ovarlez G, Bertrand F, Coussot P, et al. Shear-induced sedimentation in yield stress fluids. J Non-Newtonian Fluid Mech, 2012, 177-178: 19 doi: 10.1016/j.jnnfm.2012.03.013 [9] Atapattu D D, Chhabra R P, Uhlherr P H T. Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag. J Non-Newtonian Fluid Mech, 1995, 59(2-3): 245 doi: 10.1016/0377-0257(95)01373-4 [10] Belem T, Benzaazoua M. Design and application of underground mine paste backfill technology. Geotech Geol Eng, 2008, 26(2): 147 doi: 10.1007/s10706-007-9154-3 [11] Belem T, Benzaazoua M. An overview on the use of paste backfill technology as a ground support method in cut-and-fill mines // Proceedings of the Fifth International Symposium on Ground Support. Perth, 2004: 637 [12] Jewell RJ, Fourie A B. Paste and Thickened Tailings – A Guide. Perth: Australian Centre for Geomechanics, 2015 [13] Hustrulid W A, Hustrulid W A, Bullock R L, et al. Underground Mining Methods Engineering Fundamentals and International Case Studies. USA, SME, 2001 [14] Kesimal A, Yilmaz E, Ercikdi B. Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents. Cem Concr Res, 2004, 34(10): 1817 doi: 10.1016/j.cemconres.2004.01.018 [15] Liu T Y, Zhou C P, Jin M L, et al. Technology and Application on Cut and Fill Mining. Beijing: Metallurgical Industry Press, 2001劉同有, 周成浦, 金銘良, 等. 充填采礦技術與應用. 北京: 冶金工業出版社, 2001 [16] Wang X M, Gu D S, Zhang Q L. Filling Theory and Pipeline Transportation Technology in Deep Mine. Changsha: Central South University Press, 2010王新民, 古德生, 張欽禮. 深井礦山充填理論與管道輸送技術. 長沙: 中南大學出版社, 2010 [17] Wang H J, Wang Y, Wu A X, et al. Research of paste new definition from the viewpoint of saturation ratio and bleeding rate. J Wuhan Univ Technol, 2011, 33(6): 85 doi: 10.3963/j.issn.1671-4431.2011.06.020王洪江, 王勇, 吳愛祥, 等. 從飽和率和泌水率角度探討膏體新定義. 武漢理工大學學報, 2011, 33(6):85 doi: 10.3963/j.issn.1671-4431.2011.06.020 [18] Ruan Z E, Li C P, Zhong Y. Development progress and trend of whole-tailings particles’ migration behavior during preparation of whole-tailings paste. Met Mine, 2014(12): 13阮竹恩, 李翠平, 鐘媛. 全尾膏體制備過程中尾礦顆粒運移行為研究進展與趨勢. 金屬礦山, 2014(12):13 [19] Wu A X, Jiao H Z, Wang H J, et al. Mechanical model of scraper rake torque in deep-cone thickener. J Cent South Univ Sci Technol, 2012, 43(4): 1469吳愛祥, 焦華喆, 王洪江, 等. 深錐濃密機攪拌刮泥耙扭矩力學模型. 中南大學學報: 自然科學版, 2012, 43(4):1469 [20] Jiao H Z, Wang S F, Yang Y X, et al. Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill. J Clean Prod, 2020, 245: 118882 doi: 10.1016/j.jclepro.2019.118882 [21] Wang H J, Yang L H, Wang Y, et al. Multi-scale materials’ dispersive mixing technology of unclassified tailings paste. J Wuhan Univ Technol, 2017, 39(12): 76王洪江, 楊柳華, 王勇, 等. 全尾砂膏體多尺度物料攪拌均質化技術. 武漢理工大學學報, 2017, 39(12):76 [22] Yang L H, Wang H J, Wu A X, et al. Status and development tendency of the full-tailings paste mixing technology. Met Mine, 2016(7): 34 doi: 10.3969/j.issn.1001-1250.2016.07.005楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌技術現狀及發展趨勢. 金屬礦山, 2016(7):34 doi: 10.3969/j.issn.1001-1250.2016.07.005 [23] Yang L H, Wang H J, Wu A X, et al. Thixotropy of unclassified pastes in the process of stirring and shearing. Chin J Eng, 2016, 38(10): 1343楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌剪切過程的觸變性. 工程科學學報, 2016, 38(10):1343 [24] Cheng H Y. Characteristics of Rheological Parameters and Pipe Resistance under the Time-Temperature Effect[Dissertation]. Beijing: University of Science and Technology Beijing, 2018程海勇. 時溫效應下膏體流變參數及管阻特性[學位論文]. 北京: 北京科技大學, 2018 [25] Liu X H. Study on Rheological Behavior and Pipe Flow Resistance of Paste Backfill[Dissertation]. Beijing: University of Science and Technology Beijing, 2015劉曉輝. 膏體流變行為及其管流阻力特性研究[學位論文]. 北京: 北京科技大學, 2015 [26] Qiu H F, Liu L, Sun W B, et al. Experimental study on strength distribution of backfill in goaf. J Cent South Univ Sci Technol, 2018, 49(10): 2584邱華富, 劉浪, 孫偉博, 等. 采空區充填體強度分布規律試驗研究. 中南大學學報: 自然科學版, 2018, 49(10):2584 [27] Lu H J, Liang P, Gan D Q, et al. Research on flow sedimentation law of filling slurry and mechanical characteristics of backfill body. Rock Soil Mech, 2017, 38(Suppl1): 263盧宏建, 梁鵬, 甘德清, 等. 充填料漿流動沉降規律與充填體力學特性研究. 巖土力學, 2017, 38(增刊1): 263 [28] Wang X M, Zhu Y Y, Jiang Z L, et al. Stability of filling materials with different roof-contacted filling ratios in upward filling stoping method. Sci Technol Rev, 2014, 32(20): 37 doi: 10.3981/j.issn.1000-7857.2014.20.005王新民, 朱陽亞, 姜志良, 等. 上向進路充填采礦法不同接頂率充填體的穩定性. 科技導報, 2014, 32(20):37 doi: 10.3981/j.issn.1000-7857.2014.20.005 [29] Pullum L, Boger D V, Sofra F. Hydraulic mineral waste transport and storage. Ann Rev Fluid Mech, 2018, 50: 157 doi: 10.1146/annurev-fluid-122316-045027 [30] Pullum L, Graham L, Rudman M, et al. High concentration suspension pumping. Miner Eng, 2006, 19(5): 471 doi: 10.1016/j.mineng.2005.08.010 [31] Wu A X, Wang H J. Theory and Technology of Paste Backfill in Metal Mines. Beijing: Science Press, 2015吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015 [32] Yang L H, Wang H J, Li H, et al. Effect of high mixing intensity on rheological properties of cemented paste backfill. Minerals, 2019, 9(4): 240 doi: 10.3390/min9040240 [33] Barnes H A, Nguyen Q D. Rotating vane rheometry—a review. J Non-Newtonian Fluid Mech, 2001, 98(1): 1 doi: 10.1016/S0377-0257(01)00095-7 [34] Li S, Wang X M, Zhang Q L, et al. Time-varying characteristic of paste-like super-fine unclassified tailings in long self-flowing transportation. J Northeast Univ Nat Sci, 2016, 37(7): 1045李帥, 王新民, 張欽禮, 等. 超細全尾砂似膏體長距離自流輸送的時變特性. 東北大學學報: 自然科學版, 2016, 37(7):1045 [35] Zhai Y G, Wu A X, Wang H J, et al. Study on rheological properties of the unclassified-tailings paste. Met Mine, 2010(12): 30翟永剛, 吳愛祥, 王洪江, 等. 全尾砂膏體料漿的流變特性研究. 金屬礦山, 2010(12):30 [36] Chen Q R. Research on the Friction Loss of Upward Paste Pumping Filling in Yangla Copper Mine[Dissertation]. Beijing: University of Science and Technology Beijing, 2011陳琴瑞. 羊拉銅礦膏體上揚式泵送充填摩阻損失研究[學位論文]. 北京: 北京科技大學, 2011 [37] Wang H J, Yang L H, Li H, et al. Using coupled rheometer-FBRM to study rheological properties and microstructure of cemented paste backfill. Adv Mater Sci Eng, 2019, 2019: 6813929 [38] Liu X H. Macro-micro analysis and test method of rheological behavior of paste tailings. Met Mine, 2018(5): 7劉曉輝. 膏體尾礦流變行為的宏細觀分析及其測定方法. 金屬礦山, 2018(5):7 [39] Liu X H, Wu A X, Wang H J, et al. Experimental studies on the thixotropic characteristics of unclassified-tailings paste slurry. J Wuhan Univ Technol Transp Sci Eng, 2014, 38(3): 539劉曉輝, 吳愛祥, 王洪江, 等. 全尾膏體觸變特性實驗研究. 武漢理工大學學報: 交通科學與工程版, 2014, 38(3):539 [40] Li J, Xiao C C, Jiang J, et al. Thixotropic properties of paste pumping effect on pipeline resistance. Chin Min Mag, 2017, 26(Suppl2): 283李俊, 肖崇春, 姜寄, 等. 泵送膏體觸變特性對管道阻力的影響. 中國礦業, 2017, 26(增刊2): 283 [41] Mewis J, Wagner N J. Thixotropy. Adv Colloid Interface Sci, 2009, 147-148: 214 doi: 10.1016/j.cis.2008.09.005 [42] Atzeni C, Massidda L, Sanna U. Comparison between rheological models for portland cement pastes. Cem Concr Res, 1985, 15(3): 511 doi: 10.1016/0008-8846(85)90125-5 [43] Bingham E C. Fluidity and Plasticity. New York & London: McGraw-Hill Book Company, 1922 [44] Casson N A. Flow Equation for Pigment Oil Suspensions of the Printing Ink Type. London: Pergamon Press, 1959 [45] Buckingham E. On plastic flow through capillary tubes // Proceedings of American Society for Testing and Materials. 1921: 1154 [46] Zou H. Research on Paste Parameter of Unclassified Tailings-Granulated Blast Furnace Slag[Dissertation]. Hengyang: University of South China, 2007鄒輝. 全尾砂-水淬渣膏體性能研究[學位論文]. 衡陽: 南華大學, 2007 [47] Zhao C Z. Study on Coal Mine New Paste Filling Material Properties and Its Application[Dissertation]. Xuzhou: China University of Mining and Technology, 2008趙才智. 煤礦新型膏體充填材料性能及其應用研究[學位論文]. 徐州: 中國礦業大學, 2008 [48] Wang X M, Xiao W G, Wang X W, et al. Study on rheological properties of full tailing paste filling slurry of Jinchuan mine. Min Metall Eng, 2002, 22(3): 13 doi: 10.3969/j.issn.0253-6099.2002.03.004王新民, 肖衛國, 王小衛, 等. 金川全尾砂膏體充填料漿流變特性研究. 礦冶工程, 2002, 22(3):13 doi: 10.3969/j.issn.0253-6099.2002.03.004 [49] Zhang Z S. Study on Preparation and Rheological Properties of Waste Rock Paste from Jinchuan Mine[Dissertation]. Kunming: Kunming University of Science and Technology, 2008張宗生. 金川礦山廢石膏體配制與流變特性研究[學位論文]. 昆明: 昆明理工大學, 2008 [50] Wang W S. Study of Rheological Characters and Technologies of Cream-Body Fill[Dissertation]. Fuxin: Liaoning Technical University, 2004王五松. 膏體充填流變特性及工藝研究[學位論文]. 阜新: 遼寧工程技術大學, 2004 [51] Nguyen Q D, Boger D V. Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech, 1992, 24(1): 47 doi: 10.1146/annurev.fl.24.010192.000403 [52] Gawu S K Y, Fourie A B. Assessment of the modified slump test as a measure of the yield stress of high-density thickened tailings. Can Geotech J, 2004, 41(1): 39 doi: 10.1139/t03-071 [53] Clayton S A. The Importance of Rheology in Paste Fill Operations[Dissertation]. Melbourne: University of Melbourne, 2002 [54] Potvin Y, Thomas E G, Fourie A B. Handbook on Mine Fill. Perth: Australian Centre for Geomechanics, 2005 [55] Li H, Wu A X, Wang H J. Evaluation of short-term strength development of cemented backfill with varying sulphide contents and the use of additives. J Environ Manage, 2019, 239: 279 doi: 10.1016/j.jenvman.2019.03.057 [56] Cheng H Y, Wu S C, Wu A X, et al. Grading characterization and yield stress prediction based on paste stability coefficient. Chin J Eng, 2018, 40(10): 1168程海勇, 吳順川, 吳愛祥, 等. 基于膏體穩定系數的級配表征及屈服應力預測. 工程科學學報, 2018, 40(10):1168 [57] Cheng H Y, Wu S C, Zhang X Q, et al. Effect of particle gradation characteristics on yield stress of cemented paste backfill. Int J Miner Metall Mater, 2020, 27(1): 10 doi: 10.1007/s12613-019-1865-y [58] Xu W B, Yang B G, Yang S L, et al. Experimental study on correlativity between rheological parameters and grain grading of coal gauge backfill slurry. J Cent South Univ Sci Technol, 2016, 47(4): 1282徐文彬, 楊寶貴, 楊勝利, 等. 矸石充填料漿流變特性與顆粒級配相關性試驗研究. 中南大學學報: 自然科學版, 2016, 47(4):1282 [59] Hu H, Sun H H, Huang Y C. Rheological characteristics of paste-like backfill slurry and analysis of its influence factors. Nonferrous Met Min, 2003, 55(3): 4胡華, 孫恒虎, 黃玉誠. 似膏體充填料漿流變特性及其多因素影響分析. 有色金屬: 礦山部分, 2003, 55(3):4 [60] Meggyes T, Debreczeni A. Paste technology for tailings management. Land Contam Reclamation, 2006, 14(4): 815 doi: 10.2462/09670513.694 [61] Kesimal A, Yilmaz E, Ercikdi B, et al. Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill. Mater Lett, 2005, 59(28): 3703 doi: 10.1016/j.matlet.2005.06.042 [62] Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Cent South Univ Sci Technol, 2018, 49(10): 2519王少勇, 吳愛祥, 阮竹恩, 等. 基于環管實驗的膏體流變特性及影響因素. 中南大學學報: 自然科學版, 2018, 49(10):2519 [63] Long H C, Xia J X, Cao B. Effect of coarse/fine materials ratio on rheological properties. Min Metall Eng, 2017, 37(2): 6 doi: 10.3969/j.issn.0253-6099.2017.02.002龍海潮, 夏建新, 曹斌. 粗細物料配比對漿體流變特性影響研究. 礦冶工程, 2017, 37(2):6 doi: 10.3969/j.issn.0253-6099.2017.02.002 [64] Sun N X, Xu Z Q, Qu S J, et al. Effect of particle size distribution on rheology behavior of high-concentration coal water slurry. Coal Eng, 2015, 47(3): 122 doi: 10.11799/ce201503040孫南翔, 徐志強, 曲思建, 等. 顆粒分布對高濃度水煤漿流變性能的影響. 煤炭工程, 2015, 47(3):122 doi: 10.11799/ce201503040 [65] Zhang X X. Study on Rheological Characteristics of Waste Stone-Tailings High-Concentration Backfill Slurry and the Influence of Multiple Factors[Dissertation]. Kunming: Kunming University of Science and Technology, 2016張修香. 礦山廢石-尾砂高濃度充填料漿的流變特性及多因素影響規律研究[學位論文]. 昆明: 昆明理工大學, 2016 [66] Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117 [67] Jiang H Q, Fall M, Liang C. Yield stress of cemented paste backfill in sub-zero environments: experimental results. Miner Eng, 2016, 92: 141 doi: 10.1016/j.mineng.2016.03.014 [68] Xue Z L, Zhang Y Z, Bao Y H, et al. Study on rheological property of unclassified-tailing slurry considering the temperature effect. Met Mine, 2016(10): 35 doi: 10.3969/j.issn.1001-1250.2016.10.008薛振林, 張友志, 鮑亞豪, 等. 考慮溫度影響的全尾砂料漿流變性能研究. 金屬礦山, 2016(10):35 doi: 10.3969/j.issn.1001-1250.2016.10.008 [69] Xue Z L, Gan D Q, Zhang Y Z, et al. Rheological behavior of ultrafine-tailings cemented paste backfill in high-temperature mining conditions. Constr Build Mater, 2020, 253: 119212 doi: 10.1016/j.conbuildmat.2020.119212 [70] Kou Y P, Qi Z J, Song Z P, et al. Experimental study on rheological properties of high-concentration filling slurry with full tailings. Min Res Dev, 2018, 38(12): 32寇云鵬, 齊兆軍, 宋澤普, 等. 全尾砂高濃度充填料漿流變特性試驗研究. 礦業研究與開發, 2018, 38(12):32 [71] Wu S C, Han L Q, Cheng Z Q, et al. Study on the limit equilibrium slice method considering characteristics of inter-slice normal forces distribution: the improved Spencer method. Environ Earth Sci, 2019, 78(20): 611 doi: 10.1007/s12665-019-8621-5 [72] Cheng H Y, Wu S C, Zhang X Q, et al. A novel prediction model of strength of paste backfill prepared from waste-unclassified tailings. Adv Mater Sci Eng, 2019, 2019: 3574190 [73] Nguyen Q D, Boger D V. Application of rheology to solving tailings disposal problems. Int J Miner Process, 1998, 54(3-4): 217 doi: 10.1016/S0301-7516(98)00011-8 [74] Sofra F, Boger D V. Rheology for thickened tailings and paste–history, state-of-the-art and future directions // Proceedings of 14th International Seminar on Paste and Thickened Tailings (Paste 11). Perth, 2011: 131 -