<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

時間–速率雙因素下全尾砂膏體的屈服應力易變行為

李翠平 顏丙恒 王少勇 侯賀子 陳格仲

李翠平, 顏丙恒, 王少勇, 侯賀子, 陳格仲. 時間–速率雙因素下全尾砂膏體的屈服應力易變行為[J]. 工程科學學報, 2020, 42(10): 1308-1317. doi: 10.13374/j.issn2095-9389.2019.10.19.002
引用本文: 李翠平, 顏丙恒, 王少勇, 侯賀子, 陳格仲. 時間–速率雙因素下全尾砂膏體的屈服應力易變行為[J]. 工程科學學報, 2020, 42(10): 1308-1317. doi: 10.13374/j.issn2095-9389.2019.10.19.002
LI Cui-ping, YAN Bing-heng, WANG Shao-yong, HOU He-zi, CHEN Ge-zhong. Variability behavior of yield stress for unclassified tailings pasted under measurement time?velocity double factors[J]. Chinese Journal of Engineering, 2020, 42(10): 1308-1317. doi: 10.13374/j.issn2095-9389.2019.10.19.002
Citation: LI Cui-ping, YAN Bing-heng, WANG Shao-yong, HOU He-zi, CHEN Ge-zhong. Variability behavior of yield stress for unclassified tailings pasted under measurement time?velocity double factors[J]. Chinese Journal of Engineering, 2020, 42(10): 1308-1317. doi: 10.13374/j.issn2095-9389.2019.10.19.002

時間–速率雙因素下全尾砂膏體的屈服應力易變行為

doi: 10.13374/j.issn2095-9389.2019.10.19.002
基金項目: 國家重點研發計劃資助項目(2017YFC0602903);國家自然科學基金資助項目(51774039);北京市自然科學基金資助項目(8192029)
詳細信息
    通訊作者:

    E-mail: ybh19920509@126.com

  • 中圖分類號: TD853

Variability behavior of yield stress for unclassified tailings pasted under measurement time?velocity double factors

More Information
  • 摘要: 以往對全尾砂膏體屈服應力的研究局限于理想屈服應力流體框架內,認為一定材料配比條件下,膏體的屈服應力是確定的,即認為屈服應力是膏體料漿固有的一個物理屬性值。通過開展不同質量分數全尾砂膏體屈服應力測量實驗,分析了測量速率與測量時間對不同濃度膏體屈服應力的影響,發現屈服應力值的大小與測量過程相關。對比分析峰值屈服應力、動態屈服應力、靜態屈服應力,發現全尾砂膏體屈服應力隨測量時間–測量速率在一定條件下的變化規律,即峰值屈服應力、靜態屈服應力正比于膏體的測量速率,動態屈服應力反比于測量時間,以變異系數Cv評價料漿屈服應力的離散程度,其中74%質量分數膏體動態屈服應力變異系數最大,Cvmax=27.07%,而66%質量分數膏體靜態屈服應力變異系數最小,Cvmin=2.33%。進而從細觀層面分析了膏體屈服過程中顆粒間作用力、顆粒網絡結構隨測量時間–測量速率的變化規律,解釋了全尾砂膏體屈服應力易變性機理。

     

  • 圖  1  全尾砂粒徑分布曲線

    Figure  1.  Particle size distribution of unclassified tailings

    圖  2  理想屈服應力流體剪切應力–測量時間演化曲線

    Figure  2.  Diagram of evolution of shear stress – measuring time for ideal yield stress fluid

    圖  3  68%質量分數膏體剪切應力–測量時間演化曲線。(a)剪切速率為0.0022、0.0112、0.0223和0.1117 s–1;(b)剪切速率為0.2234、1.1170和2.2340 s–1

    Figure  3.  Shear stress–time evolution curves of pastes with 68% mass fraction: (a) shear rates are 0.0022, 0.0112, 0.0223 and 0.1117 s–1; (b) shear rates are 0.2234, 1.1170 and 2.2340 s–1

    圖  4  小剪切速率下不同質量分數膏體峰值屈服應力與對應時間。(a)峰值屈服應力;(b)峰值屈服應力對應時間

    Figure  4.  Peak yield stress and corresponding time of paste with different mass fractions at small shear rate: (a) peak yield stress of paste; (b) corresponding time of peak yield stress for paste

    圖  5  68%質量分數膏體不同測量時間下剪切應力–剪切速率曲線

    Figure  5.  Shear stress–shear rate curves of paste with 68% mass fraction at different measuring times

    圖  6  不同質量分數膏體動態屈服應力–測量時間曲線

    Figure  6.  Dynamic yield stress–measuring time curves of paste with different mass fractions

    圖  7  68%質量分數膏體不同剪切應力遞增梯度下剪切應力–剪切速率曲線

    Figure  7.  Shear stress–shear rate curves of paste with 68% mass fraction at different shear stress gradients

    圖  8  不同剪切應力遞增梯度下各質量分數膏體靜態屈服應力

    Figure  8.  Static yield stress of paste with different mass fractions at different shear stress gradients

    圖  9  膏體料漿細觀顆粒結構模型與屈服過程示意圖。(a)細觀顆粒結構模型;(b)屈服過程示意圖

    Figure  9.  Diagram of mesoscopic particle structure model of paste and yield process: (a) mesoscopic particle structure model; (b) diagram of yield process

    圖  10  膏體料漿細觀顆粒結構隨時間演化示意圖。(a) t0時刻細觀顆粒結構;(b) t1時刻細觀顆粒結構;(c) t2時刻細觀顆粒結構

    Figure  10.  Diagram of mesoscopic particle structure evolution with time of paste: (a) mesoscopic particle structure at t0; (b) mesoscopic particle structure at t1; (c) mesoscopic particle structure at t2

    表  1  槳式轉子測量系統尺寸參數

    Table  1.   Size parameters of vane rotor measurement systems

    RheometerBROOKFIELD RST-SST
    Rotor modelVT-40-20-3600128
    Rotor shapeFour-blade rotor
    Rotor height, h /mm40
    Rotor diameter, d /mm20
    Container height, H /mm100
    Container diameter, D /mm80
    Aspect ratio of rotor, h/d2
    Diameter ratio, D/d4
    下載: 導出CSV

    表  2  恒定小剪切速率法實驗參數

    Table  2.   Experimental parameters of constant small shear rate method

    Measurement proceduresConstant speed /
    (r?min–1)
    Constant shear rate / s–1Measuring time / s
    Pro.110.02.2340600
    Pro.25.001.1170600
    Pro.31.000.2234600
    Pro.40.500.1117600
    Pro.50.100.0223600
    Pro.60.050.0112600
    Pro.70.010.0022600
    下載: 導出CSV

    表  3  連續遞增剪切應力法實驗參數

    Table  3.   Experimental parameters of continuously increasing shear stress method

    Measurement proceduresTorque gradient, ΔT / (mN·m·s–1)Shear stress gradient, Δτ / (Pa·s–1)
    Pro.10.0100.3410
    Pro.20.0150.5116
    Pro.30.0200.6821
    Pro.40.0250.8526
    Pro.50.0301.0231
    Pro.60.0351.1937
    下載: 導出CSV

    表  4  屈服應力測量實驗統計參數

    Table  4.   Statistical parameters of yield stresses measurement

    Statistical parametersMass fraction
    66%68%70%72%74%
    ymax / Pay182.61109.57200.87413.18804.82
    y269.1184.70159.00288.50545.40
    y372.6593.80160.82282.65480.89
    ymin / Pay165.7184.51150.67253.49465.42
    y258.4153.7596.25160.40252.60
    y368.0687.52145.15243.13398.38
    μ / Pay174.0999.24180.23333.97658.30
    y263.1868.36122.04218.08373.68
    y370.5190.80153.67263.28443.95
    σ / Pay16.029.4318.0651.31117.45
    y23.9611.2721.8446.11101.17
    y31.652.295.7913.8332.08
    Amplitude of variation =100%×(ymaxymin)/yminy125.7229.6533.3263.0072.92
    y218.3257.5865.1979.86115.91
    y36.747.1810.8016.2520.71
    Cv / %y18.139.5110.0215.3617.84
    y26.2716.4917.9021.1427.07
    y32.332.533.775.257.23
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
    [2] Rudman M, Simic K, Paterson D A, et al. Raking in gravity thickeners. Int J Miner Process, 2008, 86(1-4): 114 doi: 10.1016/j.minpro.2007.12.002
    [3] Pullum L, Boger D V, Sofra F. Hydraulic mineral waste transport and storage. Ann Rev Fluid Mech, 2018, 58: 157
    [4] Yang C, Guo L J, Zhang L, et al. Study of the rheological characteristics of copper tailings and calculation of resistance in pipeline transportation. Chin J Eng, 2017, 39(5): 663

    楊超, 郭利杰, 張林, 等. 銅尾礦流變特性與管道輸送阻力計算. 工程科學學報, 2017, 39(5):663
    [5] Knight A, Sofra F, Stickland A, et al. Variability of shear yield stress–measurement and implications for mineral processing // Proceedings of the 20th International Seminar on Paste and Thickened Tailings. Beijing, 2017: 57
    [6] Sofra F. Rheological Properties of Fresh Cemented Paste Tailings // Paste Tailings Management. Berlin: Springer Press, 2017: 33
    [7] Mitsoulis E. Flows of Viscoplastic Materials: Models and Computations. // Rheology Reviews. London: British Society of Rheology. 2007: 135
    [8] Zhang L F, Wu A X, Wang H J, et al. Evolution law of yield stress in paste tailings. Chin J Nonferrous Met, 2018, 28(8): 1631

    張連富, 吳愛祥, 王洪江, 等. 尾礦膏體屈服應力演化規律. 中國有色金屬學報, 2018, 28(8):1631
    [9] Zhang Q L, Liu W J, Wang X M, et al. Optimal prediction model of backfill paste rheological parameters. J Cent South Univ (Sci Technol), 2018, 49(1): 124

    張欽禮, 劉偉軍, 王新民, 等. 充填膏體流變參數優化預測模型. 中南大學學報: 自然科學版, 2018, 49(1):124
    [10] Liu X H, Wu A X, Wang H J, et al. Influence mechanism and calculation model of CPB rheological parameters. Chin J Eng, 2017, 39(2): 190

    劉曉輝, 吳愛祥, 王洪江, 等. 膏體流變參數影響機制及計算模型. 工程科學學報, 2017, 39(2):190
    [11] Cheng H Y, Wu S C, Wu A X, et al. Grading characterization and yield stress prediction based on paste stability coefficient. Chin J Eng, 2018, 40(10): 1168

    程海勇, 吳順川, 吳愛祥, 等. 基于膏體穩定系數的級配表征及屈服應力預測. 工程科學學報, 2018, 40(10):1168
    [12] Coussot P, Nguyen Q D, Huynh H T, et al. Viscosity bifurcation in thixotropic, yielding fluids. J Rheol, 2002, 46(3): 573 doi: 10.1122/1.1459447
    [13] Coussot P, Nguyen Q D, Huynh H T, et al. Avalanche behavior in yield stress fluids. Phys Rev Lett, 2002, 88(17): 175501 doi: 10.1103/PhysRevLett.88.175501
    [14] Buscall R, Kusuma T E, Stickland A D, et al. The non-monotonic shear-thinning flow of two strongly cohesive concentrated suspensions. J Non-Newton Fluid Mech, 2015, 222: 112 doi: 10.1016/j.jnnfm.2014.09.010
    [15] M?ller P C F, Rodts S, Michels M A J, et al. Shear banding and yield stress in soft glassy materials. Phys Rev E, 2008, 77(4): 041507 doi: 10.1103/PhysRevE.77.041507
    [16] Baudez J C, Coussot P. Abrupt transition from viscoelastic solidlike to liquidlike behavior in jammed materials. Phys Rev Lett, 2004, 93(12): 128302 doi: 10.1103/PhysRevLett.93.128302
    [17] Coussot P, Raynaud J S, Bertrand F, et al. Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys Rev Lett, 2002, 88(21): 218301 doi: 10.1103/PhysRevLett.88.218301
    [18] Schall P, Hecke M V. Shear bands in matter with granularity. Ann Rev Fluid Mech, 2010, 42: 67 doi: 10.1146/annurev-fluid-121108-145544
    [19] Ovarlez G, Rodts S, Chateau X, et al. Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol Acta, 2009, 48(8): 831 doi: 10.1007/s00397-008-0344-6
    [20] M?ller P C F, Mewis J, Bonn D. Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter, 2006, 2(4): 274 doi: 10.1039/b517840a
    [21] Yang L H, Wang H J, Wu A X, et al. Thixotropy of unclassified pastes in the process of stirring and shearing. Chin J Eng, 2016, 38(10): 1343

    楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌剪切過程的觸變性. 工程科學學報, 2016, 38(10):1343
    [22] Coussot P, Ancey C. Rheophysical classification of concentrated suspensions and granular pastes. Phys Rev E, 1999, 59(4): 4445 doi: 10.1103/PhysRevE.59.4445
    [23] Stickland A D, Kumar A, Kusuma T E, et al. The effect of premature wall yield on creep testing of strongly flocculated suspensions. Rheol Acta, 2015, 54(5): 337 doi: 10.1007/s00397-015-0847-x
    [24] Fisher D T, Clayton S A, Boger D V, et al. The bucket rheometer for shear stress-shear rate measurement of industrial suspensions. J Rheol, 2007, 51(5): 821 doi: 10.1122/1.2750657
    [25] Mahaut F, Mokeddem S, Chateau X, et al. Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cem Concr Res, 2008, 38(11): 1276 doi: 10.1016/j.cemconres.2008.06.001
    [26] Wu A X, Jiao H Z, Wang H J, et al. Yield stress measurements and optimization of Paste tailings. J Cent South Univ (Sci Technol), 2013, 44(8): 3370

    吳愛祥, 焦華喆, 王洪江, 等. 膏體尾礦屈服應力檢測及其優化. 中南大學學報: 自然科學版, 2013, 44(8):3370
    [27] Qian Y, Kawashima S. Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cem Concr Compos, 2018, 86: 288 doi: 10.1016/j.cemconcomp.2017.11.019
    [28] Liu X H. Study on Rheological Behavior and Pipe Flow Resistance of Paste Backfill[Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    劉曉輝. 膏體流變行為及其管流阻力特性研究[學位論文]. 北京: 北京科技大學, 2015
    [29] Buscall R, Scales P J, Stickland A D, et al. Dynamic and rate-dependent yielding in model cohesive suspensions. J Non-Newton Fluid Mech, 2015, 221: 40 doi: 10.1016/j.jnnfm.2015.04.001
    [30] Coussot P. Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment. Hoboken: John Wiley & Sons Press, 2005
    [31] Tanner R I. Aspects of non-colloidal suspension rheology. Phys Fluids, 2018, 30(10): 101301 doi: 10.1063/1.5047535
  • 加載中
圖(10) / 表(4)
計量
  • 文章訪問數:  3218
  • HTML全文瀏覽量:  1047
  • PDF下載量:  58
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-10-19
  • 刊出日期:  2020-10-25

目錄

    /

    返回文章
    返回