<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

長水口對連鑄中間包鋼液保護澆注作用的研究進展

張江山 劉青 楊樹峰 李京社

張江山, 劉青, 楊樹峰, 李京社. 長水口對連鑄中間包鋼液保護澆注作用的研究進展[J]. 工程科學學報, 2020, 42(8): 939-948. doi: 10.13374/j.issn2095-9389.2019.10.15.001
引用本文: 張江山, 劉青, 楊樹峰, 李京社. 長水口對連鑄中間包鋼液保護澆注作用的研究進展[J]. 工程科學學報, 2020, 42(8): 939-948. doi: 10.13374/j.issn2095-9389.2019.10.15.001
ZHANG Jiang-shan, LIU Qing, YANG Shu-feng, LI Jing-she. Research progress on the role of ladle shroud in protecting molten steel during teeming in continuous-casting tundishes[J]. Chinese Journal of Engineering, 2020, 42(8): 939-948. doi: 10.13374/j.issn2095-9389.2019.10.15.001
Citation: ZHANG Jiang-shan, LIU Qing, YANG Shu-feng, LI Jing-she. Research progress on the role of ladle shroud in protecting molten steel during teeming in continuous-casting tundishes[J]. Chinese Journal of Engineering, 2020, 42(8): 939-948. doi: 10.13374/j.issn2095-9389.2019.10.15.001

長水口對連鑄中間包鋼液保護澆注作用的研究進展

doi: 10.13374/j.issn2095-9389.2019.10.15.001
基金項目: 國家自然科學基金資助項目(51974023);鋼鐵冶金新技術國家重點實驗室自主課題資助項目(41619001,41619025);中央高校基本科研業務費資助項目(FRF-TP-19-078A1);中國博士后科學基金資助項目(2019M660460)
詳細信息
    通訊作者:

    E-mail:yangshufeng@ustb.edu.cn

  • 中圖分類號: TF777

Research progress on the role of ladle shroud in protecting molten steel during teeming in continuous-casting tundishes

More Information
  • 摘要: 全球鋼鐵產品很大比例上是通過連鑄工藝生產的,而中間包保護澆注是連鑄生產高品質潔凈鋼的關鍵環節之一。長水口是連接于鋼包和中間包之間的耐材質通道,長水口的發明和使用在連鑄技術發展過程中起到了重要的作用,并與中間包的保護澆注效果有著緊密的聯系,具體包括防止穩態和非穩態澆注過程中的二次氧化和來源于空氣/渣/耐材/引流砂等的污染。本文基于中間包鋼液污染的來源和形式,引申出了長水口在這些方面可以起到的潛在作用,并回顧了長水口在連鑄發展早期的發明、工業實驗效果和不斷優化的歷程。工業實踐證實了長水口優良的保護澆注功能,但其實際效果與長水口的結構和操作工藝緊密相關。因此,分析了不同的長水口結構(包括工業化的長水口和一些新的設計理念)對保護澆注的影響,重點評述了喇叭型長水口在改善鋼液潔凈度和提高生產效率方面的優勢。討論了長水口的浸入深度和偏斜等操作工藝參數與保護澆注之間的關系。結合新時期煉鋼?連鑄的發展形勢,指出了未來長水口結構功能一體化的發展方向,具體表現在長壽化、輕量化、多功能化和綠色化等方面。

     

  • 圖  1  鋼液由鋼包傳輸到中間包過程中所發生的主要冶金現象(修改自文獻[12])

    Figure  1.  Main metallurgical phenomena during the transfer of molten steel from ladle to tundish (modified from Ref. [12])

    圖  2  一個連鑄澆次不同階段的中間包液位和鋼水注入流量變化

    Figure  2.  Variations of tundish pool level and inflow rate in the different stages of continuous casting

    圖  3  中間包不同澆注時期所發生的主要污染形式和污染嚴重程度排序

    Figure  3.  Contamination and its degree of severity in the different stages of continuous casting

    圖  4  自20世紀70年代以來有關長水口研究的文章發表數目

    (注:圖中Scopus數據源于關鍵詞“ladle shroud”在2019-9-30的搜索結果;CNKI為中國知網以“長水口”為題目于2019-9-30的搜索結果)

    Figure  4.  Number of publications related to ladle shroud since the 1970s

    (Note: The Scopus data were obtained by searching “ladle shroud” as key word; the CNKI data were obtained by searching “ladle shroud” as part of the title. The Scopus and CNKI data were accessed on September 30, 2019)

    圖  5  已經工業化的長水口類型。(a)直筒型;(b)喇叭型(類型1);(c)喇叭型(類型2)。

    Figure  5.  Industrialized ladle shrouds: (a) conventional straight ladle shroud; (b) type-1 trumpet ladle shroud; (c) type 2 trumpet-shaped ladle shroud

    圖  6  文獻中報道的喇叭型長水口的優點及其作用機制[28]

    Figure  6.  Advantages and related contributing mechanisms of the trumpet-shaped ladle shroud[28]

    圖  7  澆注過程中不同長水口浸入深度下中間包液位的波動(a)和渣眼大小的變化情況(b)[37]

    Figure  7.  Variations in the height difference (a) and exposed area of molten steel (b) under different filling times and immersion depths of shroud[37]

    圖  8  長水口偏斜的示意圖和所造成的不利影響[39]

    Figure  8.  Illustration of a misaligned ladle shroud and its hazards[39]

    圖  9  三板式的滑動水口結構

    Figure  9.  Schematic of the three-plate sliding gate

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Liu L. Key production-technology for high-quality special steel. <italic>Iron Steel</italic>, 2018, 53(4): 1

    劉瀏. 高品質特殊鋼關鍵生產技術. 鋼鐵, 2018, 53(4):1
    [2] Li S S, Zhang L F, Ren Y, et al. Transient behavior of inclusions during reoxidation of Si-killed stainless steels in continuous casting tundish. <italic>ISIJ Int</italic>, 2016, 56(4): 584 doi: 10.2355/isijinternational.ISIJINT-2015-694
    [3] Wang Y F, Zhang L F. Transient fluid flow phenomena during continuous casting: part II—cast speed change, temperature fluctuation, and steel grade mixing. <italic>ISIJ Int</italic>, 2010, 50(12): 1783 doi: 10.2355/isijinternational.50.1783
    [4] Sahai Y, Emi T. Tundish Technology for Clean Steel Production. Singapore: World Scientific, 2007
    [5] Cai K K. Quality Control of Continuous Casting Blank. Beijing: Metallurgical Industry Press, 2010

    蔡開科. 連鑄坯質量控制. 北京: 冶金工業出版社, 2010
    [6] Little J, Van Oosten M, McLean A. Factors affecting the reoxydation of molten steel during continuous casting. <italic>Can Metall Q</italic>, 1968, 7(4): 235 doi: 10.1179/cmq.1968.7.4.235
    [7] Sommerville I, McKeogh E. Reoxidation of steel by air entrained during casting // Continuous Casting of Steel, Second Process Technology Conference. Warrendale, 1981: 256
    [8] Li K. Preparation and Application of New-Style Sealing Member for Continuous Casting Nozzle [Dissertation]. Shenyang: Northeastern University, 2008

    李凱. 新型連鑄水口密封元件的制備及應用[學位論文]. 沈陽: 東北大學, 2008
    [9] Demasi G A, Hartmann R F. Development of the ladle shroud mechanism and its metallurgical benefits // Steelmaking Conference Proceedings. Warrendale, 1981: 245
    [10] Whitmore B C. Oxide segregation in aluminum-killed strand cast steel slabs. <italic>Iron Steelmaker</italic>, 1978, 5(10): 34
    [11] Cao E X. Development of submerged nozzles in continuous casting. <italic>Iron Steel</italic>, 1982, 17(9): 14

    曹爾仙. 連鑄用浸入式長水口的發展. 鋼鐵, 1982, 17(9):14
    [12] Zhang J S, Liu Q, Yang S F, et al. Advances in ladle shroud as a functional device in tundish metallurgy: a review. <italic>ISIJ Int</italic>, 2019, 59(7): 1167 doi: 10.2355/isijinternational.ISIJINT-2019-044
    [13] Deng X X, Ji C X, Zhu G S, et al. Quantitative evaluations of surface cleanliness in IF steel slabs at unsteady casting. <italic>Metall Mater Trans B</italic>, 2019, 50(4): 1974 doi: 10.1007/s11663-019-01589-x
    [14] Deng Z Y, Zhu M Y. Ladle filler sand: An important source of macro-inclusions in steel// Proceedings of 11th China Iron & Steel Annual Meeting. Beijing, 2017: 274

    鄧志銀, 朱苗勇. 引流砂: 鋼中大型夾雜物的重要來源// 第十一屆中國鋼鐵年會. 北京, 2017: 274
    [15] Zhang C, Zhou L, Zhu L Y, et al. Experimental analysis of drainage sand behavior during conversion process during the change of ladle. <italic>Steelmaking</italic>, 2018, 34(4): 35

    張闖, 周俐, 朱李艷, 等. 換包過程引流砂行為的試驗分析. 煉鋼, 2018, 34(4):35
    [16] Ren S B, Qin B, Zhang F. Study on packing sand movement in tunnel type tundish. <italic>Continuous Cast</italic>, 2019, 44(1): 10

    任三兵, 秦波, 張豐. 通道式中間包內引流砂運動過程研究. 連鑄, 2019, 44(1):10
    [17] Li H X. Development overview of refractory materials. <italic>J Inorg Mater</italic>, 2018, 33(2): 198 doi: 10.15541/jim20170582

    李紅霞. 耐火材料發展概述. 無機材料學報, 2018, 33(2):198 doi: 10.15541/jim20170582
    [18] Zhang M J, Huang A, Gu H Z, et al. Flow control devices establishment and erosion corrosion of refractory in the continuous casting tundish. <italic>J Wuhan Univ Sci Technol</italic>, 2010, 33(5): 449

    張美杰, 黃奧, 顧華志, 等. 連鑄中間包耐火材料的沖蝕特性與控流裝置的優化設置. 武漢科技大學學報, 2010, 33(5):449
    [19] Chatterjee S, Li D H, Chattopadhyay K. Tundish open eye formation: a trivial event with dire consequences. <italic>Steel Res Int</italic>, 2017, 88(9): 1600436 doi: 10.1002/srin.201600436
    [20] Tang H Y, Liang Y C. Formation mechanism and influence factors of sink vortex during ladle teeming. <italic>Acta Metall Sin</italic>, 2016, 52(5): 519 doi: 10.11900/0412.1961.2015.00391

    唐海燕, 梁永昌. 鋼包澆注末期匯流旋渦形成機理及影響因素. 金屬學報, 2016, 52(5):519 doi: 10.11900/0412.1961.2015.00391
    [21] Leung J, Li D H, Chattopadhyay K. Nailed it! Measurement of steel surface velocity in the tundish with open eyes // AISTech 2019——Proceedings of the Iron & Steel Technology Conference. Pittsburgh, 2019: 1467
    [22] Zhang C J, Bao Y P, Wang M, et al. Teeming stream protection using an argon shroud during casting of steel ingots. <italic>Int J Miner Metall Mater</italic>, 2017, 24(1): 47 doi: 10.1007/s12613-017-1377-6
    [23] Kasai N, Yamazoe H, Iguchi M. Development of optimum argon shrouding system between ladle and tundish. <italic>Tetsu-to-Hagane</italic>, 2005, 91(10): 763 doi: 10.2355/tetsutohagane1955.91.10_763
    [24] Zhou C S, Ping Z F. Production and Use of Refractory for Continuous Casting Monolithic Stopper, Long Nozzle and Submersed Nozzle. Beijing: Metallurgical Industry Press, 2014

    周川生, 平增幅. 連鑄“三大件”生產與使用: 整體塞棒、長水口、浸入式水口. 北京: 冶金工業出版社, 2014
    [25] Morikawa K, Yoshtomi J, Asano K. The performance of newly developed refractories for continuous // <italic>Tehran International Conference on Refractories</italic>. <italic>Tehran</italic>, 2004: 4
    [26] Rasmussen P. Improvements to steel cleanliness at Dofasco’s No.2 melt shop // Steelmaking Conference, Chicago, 1994: 219
    [27] Becker B, Prabhu N. Trumpet ladle shroud usage at No.2 BOF/CC of inland steel // Steelmaking Conference Proceedings. Washington, 1991: 489
    [28] Zhang J S, Li J S, Yan Y, et al. A comparative study of fluid flow and mass transfer in a trumpet-shaped ladle shroud using large eddy simulation. <italic>Metall Mater Trans B</italic>, 2016, 47(1): 495 doi: 10.1007/s11663-015-0495-7
    [29] Zhang J S, Yang S F, Chen Y F, et al. Comparison of multiphase flow in a continuous casting tundish using two types of industrialized ladle shrouds. <italic>JOM</italic>, 2018, 70(12): 2886 doi: 10.1007/s11837-018-2993-y
    [30] Wen G H, Huang Y F, Tang P, et al. Influence of ladle shroud’s shapes on characteristics of fluid flow in tundish. <italic>J Chongqing Univ</italic>, 2011, 34(3): 69

    文光華, 黃永鋒, 唐萍, 等. 鋼包長水口形狀對中間包內鋼液流動特性的影響. 重慶大學學報, 2011, 34(3):69
    [31] Zhang H, Fang Q, Deng S Y, et al. Multiphase flow in a five-strand tundish using trumpet ladle shroud during steady-state casting and ladle change-over. <italic>Steel Res Int</italic>, 2019, 90(3): 1800497 doi: 10.1002/srin.201800497
    [32] Zhang J S, Yang S F, Li M Y, et al. Mathematical modelling of fluid flow inside trumpet-shaped ladle shrouds. <italic>Ironmaking Steelmaking</italic>, 2017, 44(10): 732 doi: 10.1080/03019233.2017.1292692
    [33] Solorio-Díaz G, Morales R D, Ramos-Banderas A. Effect of a swirling ladle shroud on fluid flow and mass transfer in a water model of a tundish. <italic>Int J Heat Mass Transfer</italic>, 2005, 48(17): 3574 doi: 10.1016/j.ijheatmasstransfer.2005.03.007
    [34] Wang F, Li B K, Tsukihashi F. Large eddy simulation on flow structure in centrifugal flow tundish. <italic>ISIJ Int</italic>, 2007, 47(4): 568 doi: 10.2355/isijinternational.47.568
    [35] Morales-Higa K, Guthrie R I L, Isac M, et al. Ladle shroud as a flow control device for tundish operations. <italic>Metall Mater Trans B</italic>, 2013, 44(1): 63 doi: 10.1007/s11663-012-9753-0
    [36] Garcia-Hernandez S, Morales R D, de Jesus Barreto J, et al. Modeling study of slag emulsification during ladle change-over using a dissipative ladle shroud. <italic>Steel Res Int</italic>, 2016, 87(9): 1154 doi: 10.1002/srin.201500299
    [37] Zhang H, Fang Q, Luo R H, et al. Effect of ladle changeover condition on transient three-phase flow in a five-strand bloom casting tundish. <italic>Metall Mater Trans B</italic>, 2019, 50(3): 1461 doi: 10.1007/s11663-019-01572-6
    [38] Ruan F, Zhao F G, Jie C, et al. Influence of immersion depth of long nozzle on liquid steel flow characteristics in beam blank continuous casting tundish. <italic>Continuous Cast</italic>, 2015, 40(3): 9

    阮飛, 趙鳳光, 揭暢, 等. 異型坯連鑄長水口浸入深度對中間包流動特性的影響. 連鑄, 2015, 40(3):9
    [39] Das A, Chatterjee S, Mukherjee A. Efficient determination of misalignment of ladle shroud using machine vision // <italic>AISTech</italic> 2019—<italic>Proceedings of the Iron</italic> & <italic>Steel Technology Conference</italic>. <italic>Pittsburgh</italic>, 2019: 1479
    [40] Chattopadhyay K, Liu F G, Isac M, et al. Effect of vertical alignment of ladle shroud on transient steel quality output from multistrand tundish. <italic>Ironmaking Steelmaking</italic>, 2011, 38(2): 112 doi: 10.1179/030192310X12731438631723
    [41] Yu H, Choi I S, Kim M J, et al. Development of a hydraulic shroud nozzle manipulator with robust force control in continuous casting process. <italic>ISIJ Int</italic>, 2015, 55(5): 1025 doi: 10.2355/isijinternational.55.1025
    [42] Shapland E P, King P D. Full Throttle Valve and Method of Tube and Gate Change: US Patents, US4415103A. 1985-10-08
    [43] Tian L. A Device to Automatically Assemble and Disassemble Ladle Shroud: China Patent, 201810127606.X. 2018-07-27

    田陸. 一種長水口自動拆裝裝置: 中國專利, 201810127606.X. 2018-07-27
    [44] Tian L, Bao Y P, Li J, et al. Research and application of a high-sensitive slag detection system. J Univ Sci Technol Beijing, 2009, 31(Suppl 1): 58

    田陸, 包燕平, 李娟, 等. 一種高靈敏性鋼包下渣檢測裝置的研究與應用. 北京科技大學學報, 2009, 31(增刊1): 58
    [45] Lian W J. Development of the ladle slag carry-over detection technology in continuous casting. <italic>China Metall</italic>, 2011, 21(8): 8

    連文敬. 連鑄鋼包下渣檢測技術的發展. 中國冶金, 2011, 21(8):8
    [46] Chattopadhyay K, Hasan M, Isac M, et al. Physical and mathematical modeling of inert gas-shrouded ladle nozzles and their role on slag behavior and fluid flow patterns in a delta-shaped four-strand tundish. <italic>Metall Mater Trans B</italic>, 2010, 41(1): 225 doi: 10.1007/s11663-009-9296-1
    [47] Bao Y P, Liu J H, Xu B M. Behaviors of fine bubbles in the shroud nozzle of ladle and tundish. <italic>J Univ Sci Technol Beijing</italic>, 2003, 10(4): 23
    [48] Wang L H, Lee H G, Hayes P C. A new approach to molten steel refining using fine gas bubbles. <italic>ISIJ Int</italic>, 1996, 36(1): 17 doi: 10.2355/isijinternational.36.17
    [49] Chang S, Cao X K, Zou Z S, et al. Micro-bubble formation under non-wetting conditions in a full-scale water model of a ladle shroud/tundish system. <italic>ISIJ Int</italic>, 2018, 58(1): 60 doi: 10.2355/isijinternational.ISIJINT-2017-390
    [50] Evans G M, Rigby G D, Honeyands T A, et al. Gas dispersion through porous nozzles into down-flowing liquids. <italic>Chem Eng Sci</italic>, 1999, 54(21): 4861 doi: 10.1016/S0009-2509(99)00206-7
    [51] Gao A, Wang Q, Li D J, et al. Efficiency and influencing factors of electromagnetic steel-teeming technology. <italic>Acta Metall Sin</italic>, 2010, 46(5): 634 doi: 10.3724/SP.J.1037.2009.00848

    高翱, 王強, 李德軍, 等. 電磁引流技術的出鋼效率及其影響因素. 金屬學報, 2010, 46(5):634 doi: 10.3724/SP.J.1037.2009.00848
    [52] Zheng S G, Zou Q, Zhu M Y. A Method to Avoid the Entry of Filler Sand into Tundish: China Patent, 201810564363.6. 2018-10-09

    鄭淑國, 鄒琦, 朱苗勇. 一種連鑄過程控制引流砂進入中間包的方法: 中國專利, 201810564363.6. 2018-10-09
    [53] Yin R Y. The progress and propositions of Chinese steelmaking and continuous casting since the new century. <italic>China Metall</italic>, 2014, 24(8): 1

    殷瑞鈺. 新世紀以來中國煉鋼?連鑄的進步及命題. 中國冶金, 2014, 24(8):1
  • 加載中
圖(9)
計量
  • 文章訪問數:  2352
  • HTML全文瀏覽量:  1376
  • PDF下載量:  159
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-10-15
  • 刊出日期:  2020-09-11

目錄

    /

    返回文章
    返回