-
摘要: 針對縫槽爆破中以空氣作為不耦合介質,其沖擊波和準靜態壓力較小、炸藥能量利用率低、破巖能力弱的問題,提出縫槽水壓爆破方法。利用水的微壓縮性,以及傳能效率高等特點,以水作為炮孔不耦合介質,提升縫槽爆破破巖載荷,開展其爆破破巖載荷特征研究。通過自主研發的縫槽爆破載荷測試實驗系統,分別開展縫槽空氣不耦合爆破和縫槽水壓爆破實驗。結果表明:水作為縫槽爆破不耦合介質,其沖擊波壓力峰值約是縫槽空氣不耦合爆破的35倍,沖擊波壓力上升沿更平緩,入射效率更高;其準靜態壓力峰值是縫槽空氣不耦合爆破的37~46倍,水壓爆破的準靜態壓力壓降緩慢,保壓時間更長。研究表明,縫槽水壓爆破的炸藥能量利用率高,爆炸載荷提升明顯。上述研究成果有助于深入認識縫槽水壓爆破破巖載荷特性,同時對該方法的工程應用提供理論和實驗支撐。Abstract: Slot blasting is widely used in mining and tunnel construction, municipal demolition, water conservation, hydropower, and other related projects due to its low cost and high efficiency. In the slot-blasting technique, it is necessary to break the rock efficiently and minimize the damage to the area surrounding the rock. Therefore, improving the blasting efficiency and explosive energy utilization rate as well as reducing the blasting vibration and excessive crushing of rocks are of great significance to the development of blasting engineering. When air spaced uncoupling medium is used in slot blasting, its rock-breaking efficiency is significantly low due to various factors such as generation of shock waves, low quasi-static pressure, low energy utilization rate of explosive, and weak rock-breaking ability. To improve the rock-breaking load of slot blasting, the slot-hydraulic blasting method was proposed. In this method, water is utilized as the uncoupling medium for slot blasting as water has better microcompressibility and high energy transfer efficiency; in addition, research on its characteristics under rock-breaking load was investigated. Slot blasting with air spaced uncoupling charge and slot-hydraulic blasting tests were carried out under the independently developed slot blast load test system. The test results show that the shockwave pressure of slot-hydraulic blasting tests is approximately 35 times that of the air uncoupling blasting method because of the generation of high-pressure shockwaves and the higher incident efficiency. The hydraulic blasting quasi-static pressure is 37–46 times that of the air spaced uncoupled blasting, the quasi static pressure drop of hydraulic blasting is slow, and the pressure holding time is longer. The research results reveal that the energy utilization rate in the slot-hydraulic blasting is high and the blasting load improvement is significant. These results may help to better understand the rock-breaking load characteristics of slot-hydraulic blasting and provide theoretical and experimental support for utilizing the method in engineering applications.
-
Key words:
- slotting /
- hydraulic blasting /
- rock-breaking load /
- shock wave /
- quasi-static pressure
-
圖 9 不同裝藥量條件下,準靜態壓力下降段擬合曲線.空氣不耦合爆破。(a)150 mg;(b)200 mg;(c)250 mg; 水壓爆破:(d)150 mg;(e)200 mg;(f)250 mg
Figure 9. Quasi-static pressure drop fitting curve under different charge quantity conditions: air uncoupling charge blasting: (a) 150 mg, (b) 200 mg, (c) 250 mg; hydraulic blasting: (d) 150 mg, (e) 200 mg, (f) 250 mg
表 1 炸藥成分和配比(質量分數)
Table 1. Explosive composition and ration
% Sulfur Potassium nitrate Charcoal powder 21.05 34.58 47.34 表 2 實驗組設置
Table 2. Settings of the experimental group
Uncoupling medium Charge weight /mg Experimental number Air 150 #1-1, #1-2 200 #2-1, #2-2 250 #3-1, #3-2 Water 150 #4-1, #4-2 200 #5-1, #5-2 250 #6-1, #6-2 表 3 沖擊壓力數據關鍵點坐標
Table 3. Key point coordinates of shock pressure data
Experimental number Start point Peak point Time/ms Stress/MPa Time/ms Stress/MPa #1-1 349.1454 0 349.3909 8.27 #2-1 318.368 0 318.6482 7.96 #3-1 317.6606 0 317.8742 8.05 #4-1 587.009 0 590.2753 293.18 #5-1 477.9754 0 481.1862 243.30 #6-1 480.8264 0 483.1119 322.37 表 4 準靜態壓力取值
Table 4. Quasi-static pressure values
Experimental number Pag/MPa Pwg/MPa #1-2 0.05 — #2-2 0.09 — #3-2 0.14 — #4-2 — 2.3 #5-2 — 3.3 #6-2 — 5.3 表 5 準靜態壓力的測量值和理論值
Table 5. Measured and theoretical values of quasi-static pressure
Charge weight/mg Pag/MPa Pwtg/MPa Pwg/MPa Pwg/Pag Pwtg/Pag 150 0.05 1.48 2.3 46 29.6 200 0.09 3.42 3.3 36.67 38 250 0.14 6.09 5.3 37.86 43.5 www.77susu.com -
參考文獻
[1] Yang R S, Zuo J J, Li Y L, et al. Experimental study of slotted cartridge explosion shock wave propagation characteristic with different cutting seam pipe material. <italic>J China Univ Min Technol</italic>, 2019, 48(2): 229楊仁樹, 左進京, 李永亮, 等. 不同切縫管材質下切縫藥包爆炸沖擊波傳播特性研究. 中國礦業大學學報, 2019, 48(2):229 [2] Li Q, Yu Q, Zhu G Y, et al. Experimental study of crack propagation under two-hole slotted cartridge blasting with different amounts of charge. <italic>Chin J Rock Mech Eng</italic>, 2017, 36(9): 2205李清, 于強, 朱各勇, 等. 不同藥量的切縫藥包雙孔爆破裂紋擴展規律試驗. 巖石力學與工程學報, 2017, 36(9):2205 [3] Zhu Y H, Xu X P. Damage control characteristics for notched blasting based on the damage mechanism. J China Coal Soc, 2017, 42(Suppl 2): 369祝云華, 徐小鵬. 基于損傷機制的切槽控制爆破特性研究. 煤炭學報, 2017, 42(增刊2): 369 [4] Yue Z W, Guo Y, Wang X. Experimental study of crack propagation under blasting load in notched boreholes. <italic>Chin J Rock Mech Eng</italic>, 2015, 34(10): 2018岳中文, 郭洋, 王煦. 切槽孔爆炸載荷下裂紋擴展行為的實驗研究. 巖石力學與工程學報, 2015, 34(10):2018 [5] Yang R S, Che Y L, Feng D K, et al. Tests for blasting vibration reduction technique with presplitting blasting of a slotted cartridge. <italic>J Vib Shock</italic>, 2014, 33(12): 7楊仁樹, 車玉龍, 馮棟凱, 等. 切縫藥包預裂爆破減振技術試驗研究. 振動與沖擊, 2014, 33(12):7 [6] Xu Y, Shen Z W, Meng Y P. Investigation on dynamic expanding rule and application in notch blasting. <italic>J Univ Sci Technol China</italic>, 2003, 33(2): 184 doi: 10.3969/j.issn.0253-2778.2003.02.009徐穎, 沈兆武, 孟益平. 爆炸載荷作用下刻槽炮孔動態裂紋擴展規律. 中國科學技術大學學報, 2003, 33(2):184 doi: 10.3969/j.issn.0253-2778.2003.02.009 [7] Yang R S, Su H. Experimental study on crack propagation with pre-crack under explosion load. <italic>J China Coal Soc</italic>, 2019, 44(2): 482楊仁樹, 蘇洪. 爆炸荷載下含預裂縫的裂紋擴展實驗研究. 煤炭學報, 2019, 44(2):482 [8] Kang Y, Zheng D D, Su D F, et al. Model of directional shaped blasting assisted with water jet and its numerical simulation. <italic>J Vib Shock</italic>, 2015, 34(9): 182康勇, 鄭丹丹, 粟登峰, 等. 水射流切槽定向聚能爆破模型及數值模擬研究. 振動與沖擊, 2015, 34(9):182 [9] Lin D Y, Ma W C, Li Z, et al. Research on the effects of bottom water cushion on long hole blasting. <italic>Chin J Rock Mech Eng</italic>, 1992, 11(2): 130林德余, 馬萬昌, 李忠, 等. 巖石爆破中水墊層作用的研究. 巖石力學與工程學報, 1992, 11(2):130 [10] Sun L, Ren Q F, Zong Q. Application of water-decoupled charge in smooth blasting of coal mine rock tunnel. <italic>Blasting</italic>, 2010, 27(3): 25 doi: 10.3963/j.issn.1001-487X.2010.03.007孫磊, 任慶峰, 宗琦. 水不耦合裝藥結構在煤礦井巷掘進光面爆破中的應用. 爆破, 2010, 27(3):25 doi: 10.3963/j.issn.1001-487X.2010.03.007 [11] Huang B X, Liu C Y, Fu J H, et al. Hydraulic fracturing after water pressure control blasting for increased fracturing. <italic>Int J Rock Mech Min Sci</italic>, 2011, 48(6): 976 doi: 10.1016/j.ijrmms.2011.06.004 [12] Ma K, Chu Z, Wang K H, et al. Experimental research on bubble pulse of small scale charge exploded under simulated deep water. <italic>Explosion Shock Waves</italic>, 2015, 35(3): 320 doi: 10.11883/1001-1455-(2015)03-0320-06馬坤, 初哲, 王可慧, 等. 小當量炸藥深水爆炸氣泡脈動模擬實驗. 爆炸與沖擊, 2015, 35(3):320 doi: 10.11883/1001-1455-(2015)03-0320-06 [13] Li L Z, Luo X, Zhang X Y, et al. Study on the impact of explosion charge on bubble shape in near-wall. <italic>J North Univ China Nat Sci Ed</italic>, 2019, 40(4): 336李立州, 羅驍, 張新燕, 等. 裝藥量對近壁面氣泡形態影響的研究. 中北大學學報: 自然科學版, 2019, 40(4):336 [14] Cai Y L, Fu H W. Experimental study on hydraulic blasting stress wave propagation and coal broken mechanism. <italic>J China Coal Soc</italic>, 2017, 42(4): 902蔡永樂, 付宏偉. 水壓爆破應力波傳播及破煤巖機理實驗研究. 煤炭學報, 2017, 42(4):902 [15] Zhu L C, Sun Y. Digging of a trench by water-coupled longhole blasting. <italic>Eng Blast</italic>, 2000, 6(2): 67 doi: 10.3969/j.issn.1006-7051.2000.02.015朱禮臣, 孫詠. 深孔水耦合爆破開挖溝槽. 工程爆破, 2000, 6(2):67 doi: 10.3969/j.issn.1006-7051.2000.02.015 [16] Luo Y, Cui X R, Lu H. Study on blasting with water decoupling charging in borehole. <italic>Nonferrous Met </italic>(<italic>Mine Sect</italic>)<italic></italic>, 2009, 61(1): 46羅勇, 崔曉榮, 陸華. 炮孔水介質不耦合裝藥爆破的研究. 有色金屬(礦山部分), 2009, 61(1):46 [17] Zong Q, Li Y C, Xu Y. Preliminary discussion on shock pressure on hole wall when water-couple charge blasting in the hole. <italic>Chin J Hydrodyn</italic>, 2004, 19(5): 610宗琦, 李永池, 徐穎. 炮孔水耦合裝藥爆破孔壁沖擊壓力研究. 水動力學研究與進展(A輯), 2004, 19(5):610 [18] Xia B W, Liu C W, Lu Y Y, et al. Experimental study of propagation of directional fracture with slotting hydraulic blasting. <italic>J China Coal Soc</italic>, 2016, 41(2): 432夏彬偉, 劉承偉, 盧義玉, 等. 縫槽水壓爆破導向裂縫擴展實驗研究. 煤炭學報, 2016, 41(2):432 [19] Zhao J C. Research on the Controlled Blasting Method under the Condition of Decoupling Charge with Two Kinds of Mediums[Dissertation]. Taiyuan: Taiyuan University of Technology, 2005趙金昌. 雙介質不耦合斷裂損傷控制爆破技術研究[學位論文]. 太原: 太原理工大學, 2005 [20] Song S Z. Stress Wave in Solid Medium. Beijing: China Coal Industry Publishing House, 1989宋守志. 固體介質中的應力波. 北京: 煤炭工業出版社, 1989 [21] Li Y Q, Ma S Z. Mechanics of Explosion. Beijing: Science Press, 1992李翼祺, 馬素貞. 爆炸力學. 北京: 科學出版社, 1992 [22] Li K E. Seismic Acquisition and Analysis in the Area of High Velocity Shielding Layers[Dissertation]. Chengdu: Chengdu University of Technology, 2007李可恩. 含高速屏蔽層的地震數據采集及分析[學位論文]. 成都: 成都理工大學, 2007 [23] Du G H, Zhu Z M, Gong X F. Acoustics Foundation. Nanjing: Nanjing University Press, 2001杜功煥, 朱哲民, 龔秀芬. 聲學基礎. 南京: 南京大學出版社, 2001 [24] Anderson Jr C E, Baker W E, Wauters D K, et al. Quasi-static pressure, duration, and impulse for explosions (e.g. HE) in structures. <italic>Int J Mech Sci</italic>, 1983, 25(6): 455 doi: 10.1016/0020-7403(83)90059-0 [25] Liu W X, Zhang D Z, Zhong F P, et al. Quasi-static gas pressure generated by explosive charge blasting in a spherical explosion containment vessel. <italic>Explos Shock Waves</italic>, 2018, 38(5): 1045 doi: 10.11883/bzycj-2017-0056劉文祥, 張德志, 鐘方平, 等. 球形爆炸容器內炸藥爆炸形成的準靜態氣體壓力. 爆炸與沖擊, 2018, 38(5):1045 doi: 10.11883/bzycj-2017-0056 -