<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

張力退火對Zr–4合金織構和再結晶行為的影響

朱廣偉 趙乙丞 趙帆 齊鵬 張志豪

朱廣偉, 趙乙丞, 趙帆, 齊鵬, 張志豪. 張力退火對Zr–4合金織構和再結晶行為的影響[J]. 工程科學學報, 2020, 42(9): 1174-1181. doi: 10.13374/j.issn2095-9389.2019.09.27.004
引用本文: 朱廣偉, 趙乙丞, 趙帆, 齊鵬, 張志豪. 張力退火對Zr–4合金織構和再結晶行為的影響[J]. 工程科學學報, 2020, 42(9): 1174-1181. doi: 10.13374/j.issn2095-9389.2019.09.27.004
ZHU Guang-wei, ZHAO Yi-cheng, ZHAO Fan, QI Peng, ZHANG Zhi-hao. Effect of stress annealing on texture and recrystallization behavior of Zr–4 alloy[J]. Chinese Journal of Engineering, 2020, 42(9): 1174-1181. doi: 10.13374/j.issn2095-9389.2019.09.27.004
Citation: ZHU Guang-wei, ZHAO Yi-cheng, ZHAO Fan, QI Peng, ZHANG Zhi-hao. Effect of stress annealing on texture and recrystallization behavior of Zr–4 alloy[J]. Chinese Journal of Engineering, 2020, 42(9): 1174-1181. doi: 10.13374/j.issn2095-9389.2019.09.27.004

張力退火對Zr–4合金織構和再結晶行為的影響

doi: 10.13374/j.issn2095-9389.2019.09.27.004
基金項目: 國家重點研發計劃資助項目(2017YFB0306202)
詳細信息
    通訊作者:

    E-mail:ntzzh2279@163.com

  • 中圖分類號: TG146.4+14

Effect of stress annealing on texture and recrystallization behavior of Zr–4 alloy

More Information
  • 摘要: 以易控的工藝條件為基礎,通過設計簡易實驗裝置來模擬鋯合金在實際生產中的張力退火過程。采用X射線衍射(XRD)和電子背散射(EBSD)技術,對不同溫度和不同張力下退火處理后的Zr–4合金織構和再結晶行為進行研究。結果表明,施加外加應力和提高退火溫度可顯著改變再結晶織構演化過程。隨著外加應力值的增加以及退火溫度的升高,鋯合金的主要織構($\overline 1 2\overline 1 5$)[$ 10 \overline 1 0$]總量減少,極密度減弱,從而導致材料各向異性減小;外加應力和退火溫度對材料再結晶過程中小角度晶界數量以及再結晶比例產生了顯著影響,隨著外加應力的增加以及退火溫度的升高,材料內部發生動態回復和再結晶,位錯和亞結構逐漸消失,材料再結晶過程中的小角度晶界數量明顯減少,材料的再結晶過程加快,材料的再結晶比例顯著提高。外加應力的施加以及退火溫度的升高均有利于材料內部再結晶過程的加速進行。研究結果對Zr–4合金退火處理優化有指導作用,為解決鋯合金在工程應用中所遇到的問題提供了科學基礎。

     

  • 圖  1  應力退火試樣

    Figure  1.  Sample subjected to stress annealing

    圖  2  應力退火實驗裝置示意圖

    Figure  2.  Schematic of the stress-annealing experimental device

    圖  3  應力退火處理后Zr–4板材取向分布函數。(a)冷軋態;(b)580 ℃,0 MPa;(c)580 ℃,3 MPa;(d)580 ℃,9 MPa;(e)610 ℃,0 MPa;(f)610 ℃,3 MPa;(g)610 ℃,9 MPa;(h)640 ℃,0 MPa;(i)640 ℃,3 MPa;(j)640 ℃,9 MPa;(k)重要取向

    Figure  3.  Orientation distribution function of Zr–4 sheet after stress annealing: (a) cold rolled sheet; (b) 580 ℃, 0 MPa; (c) 580 ℃, 3 MPa; (d) 580 ℃, 9 MPa; (e) 610 ℃, 0 MPa; (f) 610 ℃, 3 MPa; (g) 610 ℃, 9 MPa; (h) 640 ℃, 0 MPa; (i) 640 ℃, 3 MPa;(j)640 ℃, 9 MPa; (k) important orientation position

    圖  4  不同溫度下應力退火后Zr–4合金主要織構組分極密度變化

    Figure  4.  Polar density variation of main texture components of Zr–4 alloy after stress annealing at different temperatures

    圖  5  580 ℃條件下不同保溫時間退火處理后Zr–4板材取向分布函數。(a)保溫3 min;(b)保溫9 min

    Figure  5.  Orientation distribution function of the Zr–4 sheet after annealing at different holding times at 580 °C: (a) holding 3 min;(b) holding 9 min

    圖  6  不同應力退火處理后Zr–4板材取向成像圖。(a) 冷軋態;(b) 580 ℃,0 MPa;(c) 580 ℃,3 MPa;(d) 580 ℃,9 MPa;(e) 610 ℃,0 MPa;(f) 610 ℃,3 MPa;(g) 610 ℃,9 MPa;(h) 640 ℃,0 MPa;(i) 640 ℃,3 MPa;(j)640 ℃,9 MPa

    Figure  6.  Orientation imaging of the Zr–4 sheet after different stress annealing treatments: (a) cold rolled sheet; (b) 580 ℃, 0 MPa;(c) 580 ℃, 3 MPa; (d) 580 ℃, 9 MPa; (e) 610 ℃, 0 MPa; (f) 610 ℃, 3 MPa; (g) 610 ℃, 9 MPa;(h) 640 ℃, 0 MPa; (i) 640 ℃, 3 MPa; (j) 640 ℃, 9 MPa

    圖  7  不同應力退火處理后Zr–4板材再結晶晶粒尺寸分布圖。(a)冷軋態;(b)580 ℃,0 MPa;(c)580 ℃,3 MPa;(d)580 ℃,9 MPa;(e)610 ℃,0 MPa;(f)610 ℃,3 MPa;(g)610 ℃,9 MPa;(h)640 ℃,0 MPa;(i)640 ℃,3 MPa;(j)640 ℃,9 MPa

    Figure  7.  Recrystallization grain size distribution of Zr–4 plate after different stress annealing treatments: (a) cold rolled sheet; (b) 580 ℃, 0 MPa; (c) 580 ℃, 3 MPa; (d) 580 ℃, 9 MPa; (e) 610 ℃, 0 MPa; (f) 610 ℃, 3 MPa; (g) 610 ℃, 9 MPa; (h) 640 ℃, 0 MPa; (i) 640 ℃, 3 MPa; (j) 640 ℃, 9 MPa

    圖  8  不同應力退火處理后Zr–4板材取向差分布圖。(a)冷軋態;(b) 580 ℃,0 MPa;(c) 580 ℃,3 MPa;(d) 580 ℃,9 MPa;(e) 610 ℃,0 MPa;(f)610 ℃,3 MPa;(g) 610 ℃,9 MPa;(h) 640 ℃,0 MPa;(i) 640 ℃,3 MPa;(j) 640 ℃,9 MPa

    Figure  8.  Zr–4 plate orientation difference distributions after different stress annealing treatments: (a) cold rolled sheet; (b) 580 ℃, 0 MPa; (c) 580 ℃, 3 MPa; (d) 580 ℃, 9 MPa; (e) 610 ℃, 0 MPa; (f) 610 ℃, 3 MPa; (g) 610 ℃, 9 MPa; (h) 640 ℃, 0 MPa; (i) 640 ℃, 3 MPa; (j) 640 ℃, 9 MPa

    圖  9  不同應力退火處理后Zr–4板材再結晶比例統計圖

    Figure  9.  Statistical diagram denoting the recrystallization ratio of the Zr–4 sheet after different stress annealing treatments

    表  1  實驗參數

    Table  1.   Experimental parameters

    Annealing temperature/℃Holding time/minExternal stress/MPa
    58030
    58033
    58063
    58039
    61030
    61033
    61039
    64030
    64033
    64039
    下載: 導出CSV

    表  2  不同應力退火處理后其小角度晶界比例統計結果

    Table  2.   Statistics of the proportion of small-angle grain boundaries after different stress annealing treatments

    Annealing temperature/℃External stress/MPaSmall angle grain boundary ratio/%
    Rolled sheet068
    580349
    580346
    580638
    610340
    610331
    610317
    640322
    640321
    640314
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang L X, Zhang X Y, Xue X Y, et al. Study on the microstructure and texture of zirconium alloy tube. <italic>Rare Met Mater Eng</italic>, 2013, 42(1): 153 doi: 10.3969/j.issn.1002-185X.2013.01.031

    王麗霞, 張喜燕, 薛祥義, 等. 鋯合金擠壓管坯的組織及織構研究. 稀有金屬材料與工程, 2013, 42(1):153 doi: 10.3969/j.issn.1002-185X.2013.01.031
    [2] Ni J, Zhao Y C, Wang L, et al. Microstructure of Zircaloy–4 alloy during β phase quenching and determination of critical quenching diameter of its rods. <italic>Nucl Mater Energy</italic>, 2018, 17: 158 doi: 10.1016/j.nme.2018.10.014
    [3] Zhang Y, Zhang C, Yuan G H, et al. Effect of second phase particles on the hydrogen absorption properties of Zr–Sn–Nb zirconium alloys. <italic>Rare Met Mater Eng</italic>, 2019, 48(8): 2507

    張寅, 張誠, 袁改煥, 等. 第二相對Zr–Sn–Nb系鋯合金吸氫性能的影響. 稀有金屬材料與工程, 2019, 48(8):2507
    [4] Ni J, Wang L, Zhang Z H, et al. Interfacial heat transfer behavior between Zr–4 alloy and H13 die Steel. <italic>Rare Met Mater Eng</italic>, 2019, 48(5): 1579

    倪嘉, 王練, 張志豪, 等. Zr–4合金與H13模具鋼的界面換熱行為研究. 稀有金屬材料與工程, 2019, 48(5):1579
    [5] Zhao Y C, Zhu G W, Qi P, et al. Measurement of friction factor in plastic forming of Zr–4 alloy based on ring compression and extrusion-simulation. <italic>Chin J Eng</italic>, 2020, 42(02): 209

    趙乙丞, 朱廣偉, 齊鵬, 等. 基于圓環壓縮和擠壓–模擬法的Zr–4合金塑性成形摩擦因子測定. 工程科學學報, 2020, 42(02):209
    [6] Li M H, Wang X. The deformation mechanism of zirconium alloy and evolution discipline of its alloys plates texture. <italic>Titanium Ind Prog</italic>, 2012, 29(6): 6

    李麥海, 王興. 鋯合金變形機理及其板材織構演化規律. 鈦工業進展, 2012, 29(6):6
    [7] Wang Y N, Huang J C. Texture analysis in hexagonal materials. <italic>Mater Chem Phys</italic>, 2003, 81(1): 11 doi: 10.1016/S0254-0584(03)00168-8
    [8] Liu C Z, Li G P, Chu L H, et al. Texture and yielding anisotropy of zircaloy–4 alloy cladding tube produced by cold pilger rolling and annealing. <italic>Mater Sci Eng A</italic>, 2018, 719: 147 doi: 10.1016/j.msea.2018.02.043
    [9] Xu B, Yu J H, Sun G C, et al. Influence of Process for Zr–4 Alloy Plate and Strip Texture. <italic>Met World</italic>, 2017(04): 28 doi: 10.3969/j.issn.1000-6826.2017.04.06

    徐濱, 于軍輝, 孫國成, 等. 影響Zr–4合金板帶材織構的工藝因素. 金屬世界, 2017(04):28 doi: 10.3969/j.issn.1000-6826.2017.04.06
    [10] Peng Q, Shen B L. Texture of zirconium alloy and its effects on properties. <italic>Chin J Rare Met</italic>, 2005, 29(6): 903 doi: 10.3969/j.issn.0258-7076.2005.06.021

    彭倩, 沈保羅. 鋯合金的織構及其對性能的影響. 稀有金屬, 2005, 29(6):903 doi: 10.3969/j.issn.0258-7076.2005.06.021
    [11] Wu Y, Yao X N, Tian F, et al. Effect of rolling technology on texture orientation and corrosion performance of Zr–4 zirconium alloy strips. <italic>Rare Met Mater Eng</italic>, 2012, 41(12): 2238 doi: 10.3969/j.issn.1002-185X.2012.12.036

    武宇, 姚修楠, 田鋒, 等. 軋制工藝對Zr–4合金帶材織構取向及腐蝕性能的影響. 稀有金屬材料與工程, 2012, 41(12):2238 doi: 10.3969/j.issn.1002-185X.2012.12.036
    [12] Zhao L K, Li X N, Yue Q, et al. Effect of processing technology on microstructure of Zr–4 alloy hot rolled plates. <italic>Hot Working Technol</italic>, 2018, 47(17): 36

    趙林科, 李小寧, 岳強, 等. 加工工藝對Zr–4合金熱軋板材微觀組織的影響. 熱加工工藝, 2018, 47(17):36
    [13] Fuloria D, Kumar N, Jayaganthan R, et al. Microstructural and textural characterization of Zircaloy–4 processed by rolling at different temperatures. <italic>Mater Charact</italic>, 2017, 127: 296 doi: 10.1016/j.matchar.2017.02.020
    [14] Wang W G, Zhou B X. Texture controlling of zircaloy plate. <italic>Nucl Power Eng</italic>, 1994, 15(2): 158

    王衛國, 周邦新. 鋯合金板織構的控制. 核動力工程, 1994, 15(2):158
    [15] Wang W G, Zhou B X. Effect of rolling temperature on the textures of Zircaloy–4 plate. <italic>Nucl Power Eng</italic>, 1996, 17(3): 255

    王衛國, 周邦新. 軋制溫度對Zr–4合金板織構的影響. 核動力工程, 1996, 17(3):255
    [16] Li X N, Wang K S, Yu J H, et al. Effects of finishing annealing temperature on deformation texture and mechanical properties of Zr–4 zirconium alloy tube. <italic>Rare Met Cemented Carbides</italic>, 2018, 46(4): 73

    李小寧, 王塊社, 于軍輝, 等. 成品退火溫度對Zr–4鋯合金管材變形織構和力學性能的影響. 稀有金屬與硬質合金, 2018, 46(4):73
    [17] Zeng Q H, Luan B F, Chapuis A, et al. Evolution of crystallographic texture of zirconium alloy during hot deformation. <italic>Rare Met Mater Eng</italic>, 2019, 48(8): 2393
    [18] Saintoyant L, Legras L, Brechet Y. E?ect of an applied stress on the recrystallization mechanisms of a zirconium alloy. <italic>Scripta Mater</italic>, 2011, 64(5): 418 doi: 10.1016/j.scriptamat.2010.11.003
    [19] Bhaumik S, Molodova X, Gottstein G. Effect of stress on the annealing behavior of severely plastically deformed aluminum alloy 3103. <italic>Mater Sci Eng A</italic>, 2010, 527(21-22): 5826 doi: 10.1016/j.msea.2010.05.053
    [20] Zeng Q H. Microstructure and Texture Evolution during Hot Compression of Zirconium Alloy with Different Initial Orientation[Dissertation]. Chongqing: Chongqing University, 2018

    曾慶輝. 初始取向對鋯合金熱壓縮變形微觀組織及織構演變的影響[學位論文]. 重慶: 重慶大學, 2018
    [21] Jiang Y B. Applied Fundamental Research of the High-density Electropulsing on the Manufacturing of AZ91 Magnesium Alloy Strip[Dissertation]. Beijing: Tsinghua University, 2010

    姜雁斌. 高能電脈沖在制備AZ91 鎂合金中的應用基礎研究[學位論文]. 北京: 清華大學, 2010
    [22] Mao W M, Yang P, Chen L. Material Texture Analysis Principle and Detection Technology. Beijing: Metallurgical Industry Press, 2007

    毛衛民, 楊平, 陳冷. 材料織構分析原理與檢測技術. 北京: 冶金工業出版社, 2007
    [23] Chen X. Microstructure and Texture Evolution of Zr–4 Alloy in Deformation and Subsequent Annealing[Dissertation]. Chongqing: Chongqing University, 2018

    陳欣. Zr–4 合金變形及退火過程中組織與織構演變[學位論文]. 重慶: 重慶大學, 2018
    [24] He W J, Chapuis A, Chen X, et al. Effect of loading direction on the deformation and annealing behavior of a zirconium alloy. <italic>Mater Sci Eng A</italic>, 2018, 734: 364 doi: 10.1016/j.msea.2018.08.013
    [25] Chakravarty J K, Kapoor R, Sarkar A, et al. Dynamic recrystallization in zirconium alloys. <italic>J ASTM Int</italic>, 2010, 7(8): 1
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  1630
  • HTML全文瀏覽量:  1098
  • PDF下載量:  45
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-27
  • 刊出日期:  2020-09-20

目錄

    /

    返回文章
    返回