<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于融合模型的鋰離子電池荷電狀態在線估計

王曉蘭 靳皓晴 劉祥遠

王曉蘭, 靳皓晴, 劉祥遠. 基于融合模型的鋰離子電池荷電狀態在線估計[J]. 工程科學學報, 2020, 42(9): 1200-1208. doi: 10.13374/j.issn2095-9389.2019.09.20.001
引用本文: 王曉蘭, 靳皓晴, 劉祥遠. 基于融合模型的鋰離子電池荷電狀態在線估計[J]. 工程科學學報, 2020, 42(9): 1200-1208. doi: 10.13374/j.issn2095-9389.2019.09.20.001
WANG Xiao-lan, JIN Hao-qing, LIU Xiang-yuan. Online estimation of the state of charge of a lithium-ion battery based on the fusion model[J]. Chinese Journal of Engineering, 2020, 42(9): 1200-1208. doi: 10.13374/j.issn2095-9389.2019.09.20.001
Citation: WANG Xiao-lan, JIN Hao-qing, LIU Xiang-yuan. Online estimation of the state of charge of a lithium-ion battery based on the fusion model[J]. Chinese Journal of Engineering, 2020, 42(9): 1200-1208. doi: 10.13374/j.issn2095-9389.2019.09.20.001

基于融合模型的鋰離子電池荷電狀態在線估計

doi: 10.13374/j.issn2095-9389.2019.09.20.001
詳細信息
    通訊作者:

    E-mail:wangzt@lut.cn

  • 中圖分類號: TM911.3

Online estimation of the state of charge of a lithium-ion battery based on the fusion model

More Information
  • 摘要: 針對鋰離子電池荷電狀態(Stage of charge,SOC)在線估計精度不高,等效電路模型法估計精度與模型復雜度相矛盾的問題,本文對擴展卡爾曼濾波算法進行了改進,并以電池工作電壓、電流為輸入,對應等效電路模型法的SOC估計誤差為輸出,采用極限學習機算法,建立基于輸入輸出數據的SOC估計誤差預測模型,采用物理–數據融合方法,基于誤差預測模型,建立了等效電路模型法結合極限學習機的鋰離子電池SOC在線估計模型。仿真結果表明,改進擴展卡爾曼濾波算法提高了算法的估計精度,而物理–數據融合的鋰離子電池SOC在線估計模型減小了由電壓、電流測量所引入的估計誤差,克服了等效電路模型法估計精度與模型復雜度之間相矛盾的問題,進一步提高了SOC的估計精度,滿足估計誤差不超過5%的應用需求。

     

  • 圖  1  電池模塊原理圖

    Figure  1.  Schematic of the battery module

    圖  2  一階Thevenin等效電路模型

    Figure  2.  First-order Thevenin equivalent circuit model

    圖  3  改進EKF算法估計SOC流程圖

    Figure  3.  Flowchart of the improved extended Kalman filtering (EKF) algorithm used to estimate the state of charge (SOC)

    圖  4  EKF算法誤差對比曲線

    Figure  4.  Error contrast curve of the EKF algorithm

    圖  5  基于ELM的SOC誤差預測模型結構

    Figure  5.  Structure of the SOC error prediction model based on the extreme learning machine algorithm

    圖  6  預測模型在測試集下的絕對誤差值

    Figure  6.  Absolute error of the prediction model under the test set

    圖  7  融合模型法系統結構圖

    Figure  7.  System structure diagram of the fusion model method

    圖  8  絕對誤差對比

    Figure  8.  Comparison of the absolute errors

    圖  9  二階Thevenin等效電路模型

    Figure  9.  Second-order Thevenin equivalent circuit model

    圖  10  SOC估計曲線對比

    Figure  10.  Comparison of the SOC estimation curves

    表  1  第一組放電試驗數據

    Table  1.   First set of discharge data

    Current, I/AVoltage, UL/VStandard value of SOCS
    4.9914.1101
    6.8274.0891
    6.5014.0840.999
    $ \vdots $$ \vdots $$ \vdots $
    57.7703.4200.665
    45.9623.3910.664
    $ \vdots $$ \vdots $$ \vdots $
    29.6993.1090.156
    25.5373.0720.155
    下載: 導出CSV

    表  2  第二組放電試驗數據

    Table  2.   Second set of discharge data

    Current,$I$/AVoltage,${U_{\rm{L}}}$/VStandard value of SOCs
    4.9924.1091
    6.8264.0871
    6.5014.0840.999
    $ \vdots $$ \vdots $$ \vdots $
    52.7303.4210.664
    42.1853.4300.662
    $ \vdots $$ \vdots $$ \vdots $
    33.1223.0830.156
    32.5832.9790.155
    下載: 導出CSV

    表  3  一階Thevenin等效電路模型參數

    Table  3.   Parameters of the first-order Thevenin equivalent circuit model

    ${R_0}$/Ω${R_1}$/Ω${C_1}$/F
    0.00560.00725631.8
    下載: 導出CSV

    表  4  傳統EKF算法與改進EKF算法均方誤差對比

    Table  4.   Comparison of the mean squared error between the traditional and improved extended Kalman filtering (EKF) algorithms

    AlgorithmMean squared error
    Traditional EKF algorithm2.188 × 10–3
    Improved EKF algorithm9.899 × 10–4
    下載: 導出CSV

    表  5  SOC估計絕對誤差

    Table  5.   Absolute error of the state of charge estimation

    First groupSecond group
    00
    1.052 × 10–41.053 × 10–4
    9.685 × 10–59.680 × 10–5
    $ \vdots $$ \vdots $
    0.0270.032
    0.0270.032
    $ \vdots $$ \vdots $
    0.0420.047
    0.0430.047
    下載: 導出CSV

    表  6  基于ELM的誤差預測模型性能

    Table  6.   Error prediction of model line performance based on the extreme learning machine algorithm

    Decisive factorMean square errorTraining time/s
    0.483 × 10–55.05
    下載: 導出CSV

    表  7  二階Thevenin等效電路參數

    Table  7.   Parameters of the second-order Thevenin equivalent circuit model

    R0R1R2C1/FC2/F
    0.00550.00410.0017217973634
    下載: 導出CSV

    表  8  不同模型估計結果對比

    Table  8.   Comparison of the estimation results of different models

    Model Mean square error Maximum absolute error Maximum percent error/%
    First-order Thevenin model 9.89 × 10–4 0.05 0.3
    Second-order Thevenin model 4.98 × 10–4 0.03 0.10
    Fusion model 3.01 × 10–5 0.02 0.09
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Feng Z H, Wang X C, Zhang H Y, et al. Path and policy of green transportation development from low carbon perspective. <italic>Transp Res</italic>, 2019, 5(4): 37

    鳳振華, 王雪成, 張海穎, 等. 低碳視角下綠色交通發展路徑與政策研究. 交通運輸研究, 2019, 5(4):37
    [2] Zhang M D. Current status and development trend of electric vehicle batteries. <italic>Internal Combust Engine Parts</italic>, 2019(15): 230

    張美迪. 電動汽車電池的現狀及發展趨勢. 內燃機與配件, 2019(15):230
    [3] Jiang J C, Gao Y, Zhang C P, et al. Online diagnostic method for health status of lithium-ion battery in electric vehicle. <italic>J Mech Eng</italic>, 2019, 55(20): 60

    姜久春, 高洋, 張彩萍, 等. 電動汽車鋰離子動力電池健康狀態在線診斷方法. 機械工程學報, 2019, 55(20):60
    [4] Fu X L, Shang Y L, Cui N X. Research and development trend on battery management system for EV. <italic>Power Electron</italic>, 2011, 45(12): 27

    符曉玲, 商云龍, 崔納新. 電動汽車電池管理系統研究現狀及發展趨勢. 電力電子技術, 2011, 45(12):27
    [5] Tan Z F, Sun R L, Yang R, et al. Overview of battery management system. <italic>J Chongqing Univ Technol Nat Sci</italic>, 2019, 33(9): 40

    譚澤富, 孫榮利, 楊芮, 等. 電池管理系統發展綜述. 重慶理工大學學報: 自然科學, 2019, 33(9):40
    [6] Zhang C J, Chen H. Review of state of charge estimation methods for lithium battery. <italic>Chin J Power Sources</italic>, 2016, 40(6): 1318

    張持健, 陳航. 鋰電池SOC預測方法綜述. 電源技術, 2016, 40(6):1318
    [7] Yan X W, Deng H R, Guo Q, et al. Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization. <italic>Trans China Electrotech Soc</italic>, 2019, 34(18): 3937

    顏湘武, 鄧浩然, 郭琪, 等. 基于自適應無跡卡爾曼濾波的動力電池健康狀態檢測及梯次利用研究. 電工技術學報, 2019, 34(18):3937
    [8] Lu L G, Li J Q, Hua J F, et al. A review on the key issues of the lithium-ion battery management. <italic>Sci Technol Rev</italic>, 2016, 34(6): 39

    盧蘭光, 李建秋, 華劍鋒, 等. 電動汽車鋰離子電池管理系統的關鍵技術. 科技導報, 2016, 34(6):39
    [9] Xia C Y, Zhang S, Sun H T. A strategy of estimating state of charge based on extended Kalman filter. <italic>Chin J Power Sources</italic>, 2007, 31(5): 414

    夏超英, 張術, 孫宏濤. 基于推廣卡爾曼濾波算法的SOC估算策略. 電源技術, 2007, 31(5):414
    [10] Li Z Y, Li Z Q, Lv F. State of charge estimation of lithium-ion battery based on UKF method. <italic>J J Guangxi Univ Sci Technol</italic>, 2019, 30(3): 41

    李澤洋, 李振強, 呂豐. 基于UKF方法的鋰離子電池荷電狀態估計研究. 廣西科技大學學報, 2019, 30(3):41
    [11] Johnson V H. Battery performance models in ADVISOR. <italic>J Power Sources</italic>, 2002, 110(2): 321 doi: 10.1016/S0378-7753(02)00194-5
    [12] Salameh Z M, Casacca M A, Lynch W A. A mathematical model for lead-acid batteries. <italic>IEEE Trans Energy Convers</italic>, 1992, 7(1): 93 doi: 10.1109/60.124547
    [13] Zhang L, Zhang Q, Chang C, et al. Research on equivalent circuit model for state of charge estimation of electric vehicle. <italic>J Electron Meas Instrum</italic>, 2014, 28(10): 1161

    張利, 張慶, 常成, 等. 用于電動汽車SOC估計的等效電路模型研究. 電子測量與儀器學報, 2014, 28(10):1161
    [14] Ren Y H. The Research on the On-Line SOC Estimation Method for Power Battery[Dissertation]. Tianjin: Hebei University of Technology, 2017

    任育涵. 動力電池SoC在線估計方法研究[學位論文]. 天津: 河北工業大學, 2017
    [15] Zhang W P, Lei G Y, Zhang X Q. A simplified Li-ion battery SOC estimation method. <italic>Chin J Power Sources</italic>, 2016, 40(7): 1359

    張衛平, 雷歌陽, 張曉強. 一種簡化的鋰離子電池SOC估計方法. 電源技術, 2016, 40(7):1359
    [16] Gu M, Xia C Y, Tian C Y. Li-ion battery state of charge estimation based on comprehensive Kalman filter. <italic>Trans China Electrotech Soc</italic>, 2019, 34(2): 419

    谷苗, 夏超英, 田聰穎. 基于綜合型卡爾曼濾波的鋰離子電池荷電狀態估算. 電工技術學報, 2019, 34(2):419
    [17] Ren J, Wang K, Ren B S. State of charge estimation of lithium-ion battery based on improved model and unscented Kalman filter. <italic>Electr Energy Manage Technol</italic>, 2019(4): 64

    任軍, 王凱, 任寶森. 基于改進模型和無跡卡爾曼濾波的鋰離子電池荷電狀態估計. 電器與能效管理技術, 2019(4):64
    [18] Qian N, Yan Y B, Li W J, et al. Improving of Thevenin equivalent model for lithium iron phosphate Li-ion battery. <italic>Battery Bimonthly</italic>, 2018, 48(4): 257

    錢能, 嚴運兵, 李文杰, 等. 磷酸鐵鋰鋰離子電池Thevenin等效模型的改進. 電池, 2018, 48(4):257
    [19] Cai X, Li B, Wang H H, et al. Estimation of state-of-charge for electric vehicle power battery with neural network method. <italic>Mech Electr Eng Mag</italic>, 2015, 32(1): 128

    蔡信, 李波, 汪宏華, 等. 基于神經網絡模型的動力電池SOC估計研究. 機電工程, 2015, 32(1):128
    [20] Lei X, Chen Q Q, Liu K P, et al. Battery state of charge estimation based on neural-network for electric vehicles. <italic>Trans China Electrotech Soc</italic>, 2007, 22(8): 155

    雷肖, 陳清泉, 劉開培, 等. 電動車蓄電池荷電狀態估計的神經網絡方法. 電工技術學報, 2007, 22(8):155
    [21] Fan X M, Wang C, Zhang X, et al. A prediction method of Li-ion batteries SOC based on incremental learning relevance vector machine. <italic>Trans China Electrotech Soc</italic>, 2019, 34(13): 2700

    范興明, 王超, 張鑫, 等. 基于增量學習相關向量機的鋰離子電池SOC預測方法. 電工技術學報, 2019, 34(13):2700
    [22] Song S J, Wang Z H, Lin X F. Research on SOC estimation of LiFePO4 batteries based on ELM. <italic>Chin J Power Sources</italic>, 2018, 42(6): 806

    宋紹劍, 王志浩, 林小峰. 基于極限學習機的磷酸鐵鋰電池SOC估算研究. 電源技術, 2018, 42(6):806
    [23] Zhang Y H, Wang D, Xiao W, et al. Review of SOC estimation and difficulties in Li-ion battery. <italic>Chin J Power Sources</italic>, 2019, 43(11): 1894

    張易航, 王鼎, 肖圍, 等. 鋰離子電池SOC估算方法概況及難點分析. 電源技術, 2019, 43(11):1894
    [24] Zhu Z. Research on SOC Estimation of LifeP04 Battery[Dissertation]. Harbin: Harbin Institute of Technology, 2013

    朱政. 磷酸鐵鋰電池荷電狀態估計方法的研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2013
    [25] Zhang Y X. Parameter Identification and SOC Estimation of Power Battery for Electric Vehicle[Dissertation]. Changchun: Jilin University, 2014

    張禹軒. 電動汽車動力電池模型參數在線辨識及SOC估計[學位論文]. 長春: 吉林大學, 2014
    [26] Wang X B, Xu J H, Zhang Z. On analysis and application approach for Kalman filter parameters. <italic>Comput Appl Software</italic>, 2012, 29(6): 212

    王學斌, 徐建宏, 張章. 卡爾曼濾波器參數分析與應用方法研究. 計算機應用與軟件, 2012, 29(6):212
    [27] Feng G R, Huang G B, Lin Q P, et al. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. <italic>IEEE Trans Neural Networks</italic>, 2009, 20(8): 1352 doi: 10.1109/TNN.2009.2024147
    [28] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks//Proceedings of 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541). Budapest, Hungary, 2004: 985
  • 加載中
圖(10) / 表(8)
計量
  • 文章訪問數:  1508
  • HTML全文瀏覽量:  952
  • PDF下載量:  77
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-09-20
  • 刊出日期:  2020-09-20

目錄

    /

    返回文章
    返回