[1] |
Ren J, Cui G J, Lu Z X. Experimental study on tribological characteristics of friction plate for belt conveyor. <italic>Sci Technol Eng</italic>, 2017, 17(30): 223任劍, 崔功軍, 魯張祥. Cu–Fe基摩擦片摩擦磨損性能的實驗研究. 科學技術與工程, 2017, 17(30):223
|
[2] |
Li Y W, Xiao L R, Zhang W, et al. Microstructure and mechanical properties of aluminum bronze with different Mn contents. <italic>Chin J Rare Met</italic>, 2017, 41(9): 985李雨蔚, 肖來榮, 章瑋, 等. 不同Mn含量的鋁青銅合金組織與性能. 稀有金屬, 2017, 41(9):985
|
[3] |
Jiang Y L, Zhu H G. Research status of friction and wear properties of copper matrix composites. <italic>Mater Rep</italic>, 2014, 28(3): 33蔣婭琳, 朱和國. 銅基復合材料的摩擦磨損性能研究現狀. 材料導報, 2014, 28(3):33
|
[4] |
?sterle W, Prietzel C, Klo? H, et al. On the role of copper in brake friction materials. <italic>Tribol Int</italic>, 2010, 43(12): 2317 doi: 10.1016/j.triboint.2010.08.005
|
[5] |
He B, Wang C, Lei T, et al. Study on properties of gradient layers of laser deposited TC4/TC11 gradient composite structure. <italic>Chin J Rare Met</italic>, 2014, 38(6): 1何波, 王晨, 雷濤, 等. 激光沉積TC4/TC11梯度復合結構各梯度層性能研究. 稀有金屬, 2014, 38(6):1
|
[6] |
Wei Y, Wang W, Zhang Y N, et al. Synergistic enhancement of bio-tribological properties of Ti13Nb13Zr alloy by surface shot peening and Fe<sup>+</sup> implantation. <italic>Chin J Rare Met</italic>, 2020, 44(1): 48魏燕, 王偉, 張雁南, 等. 表面噴丸與Fe<sup>+</sup>注入協同增強Ti13Nb13Zr合金的生物摩擦學性能. 稀有金屬, 2020, 44(1):48
|
[7] |
He D H, Manory R. A novel electrical contact material with improved self-lubrication for railway current collectors. <italic>Wear</italic>, 2001, 249(7): 626 doi: 10.1016/S0043-1648(01)00700-1
|
[8] |
Xiao Y L, Zhang Z Y, Yao P P, et al. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. <italic>Tribol Int</italic>, 2018, 119: 585 doi: 10.1016/j.triboint.2017.11.038
|
[9] |
Moustafa S F, El-Badry S A, Sanad A M, et al. Friction and wear of copper–graphite composites made with Cu-coated and uncoated graphite powders. <italic>Wear</italic>, 2002, 253(7-8): 699 doi: 10.1016/S0043-1648(02)00038-8
|
[10] |
Senouci A, Frene J, Zaidi H. Wear mechanism in graphite–copper electrical sliding contact. <italic>Wear</italic>, 1999, 225-229: 949 doi: 10.1016/S0043-1648(98)00412-8
|
[11] |
Zhou H B, Yao P P, Xiao Y L, et al. Friction and wear maps of copper metal matrix composites with different iron volume content. <italic>Tribol Int</italic>, 2019, 132: 199 doi: 10.1016/j.triboint.2018.11.027
|
[12] |
Zhang M, Wang G, Zhang L S, et al. Microstructure and properties of laser cladding Fe, Ni-based coatings on 40Cr surface. Chin J Rare Met, http://kns.cnki.net/kcms/detail/11.2111.TF.20191211.0955.001.html張敏, 王剛, 張立勝, 等.40Cr鋼表面激光熔覆Fe、Ni基涂層組織性能研究.稀有金屬, http://kns.cnki.net/kcms/detail/11.2111.TF.20191211.0955.001.html
|
[13] |
Xiong X, Chen J, Yao P P, et al. Friction and wear behaviors and mechanisms of Fe and SiO<sub>2</sub> in Cu-based P/M friction materials. <italic>Wear</italic>, 2007, 262(9-10): 1182 doi: 10.1016/j.wear.2006.11.001
|
[14] |
劉伯威, 樊毅, 張金生, 等. SiO<sub>2</sub>和SiC 對 Cu–Fe 基燒結摩擦材料性能的影響. 中國有色金屬學報, 2001, 11(增刊1):110)Liu B W, Fan Y, Zhang J S, et al. Effect of SiO<sub>2</sub> and SiC on properties of Cu–Fe matrix sintered friction materials. <italic>Chin J Nonferrous Met</italic>, 2001, 11(增刊1): 110
|
[15] |
Guo W, Shen Y, Lu D P, et al. Effect of heat treatment on microstructure and properties of Cu–14Fe–C alloy. <italic>Heat Treat Met</italic>, 2018, 43(4): 88郭煒, 諶昀, 陸德平, 等. 熱處理對Cu–14Fe–C合金組織和性能的影響. 金屬熱處理, 2018, 43(4):88
|
[16] |
Guo M X, Wang F, Yi L. The microstructure controlling and deformation behaviors of Cu–Fe–C alloy prepared by rapid solidification. <italic>Mater Sci Eng A</italic>, 2016, 657: 197 doi: 10.1016/j.msea.2016.01.068
|
[17] |
Guo M X, Zhu J, Yi L, et al. Effects of precipitation and strain-induced martensitic transformation of Fe–C phases on the mechanical properties of Cu–Fe–C alloy. <italic>Mater Sci Eng A</italic>, 2017, 697: 119 doi: 10.1016/j.msea.2017.05.010
|
[18] |
Cui Z Q, Qin Y C. Metallology and Heat Treatment. 2nd Ed. Beijing: China Machine Press, 2011崔忠圻, 覃耀春. 金屬學與熱處理. 2版. 北京: 機械工業出版社, 2011
|
[19] |
Shi B, Song H W, Wang X F, et al. Nanoindentation characterization of low carbon matensitic steels//Proceedings of New Progress on Materials Science and Engineering. Beijing, 2004: 1300史弼, 宋洪偉, 王秀芳, 等. 低碳板條馬氏體鋼的納米壓痕表征//材料科學與工程新進展論文集. 北京, 2004: 1300
|
[20] |
Zhang J S, Liu X J, Cui H, et al. Mechanical properties around reinforce particles in metal matrix composites characterized by nanoindentation technique. <italic>Acta Metall Sinica</italic>, 1997, 33(5): 548張濟山, 劉興江, 崔華, 等. 金屬基復合材料相界面區力學性能顯微力學探針分析. 金屬學報, 1997, 33(5):548
|
[21] |
He J A, Wang Y W. Material Wear and Wear Resistance Materials. Shenyang: Northeastern University Press, 2001何獎愛, 王玉瑋. 材料磨損與耐磨材料. 沈陽: 東北大學出版社, 2001
|
[22] |
Huang X X, Shen Y H, Jin S Y, et al. High-temperature wear performance and mechanism of NM400/NM500 mining machinery steels. <italic>Chin J Eng</italic>, 2019, 41(6): 797黃夏旭, 申炎華, 靳舜堯, 等. NM400/NM500級礦山機械用鋼的高溫磨損性能及機理. 工程科學學報, 2019, 41(6):797
|