<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于BiLSTM的公共安全事件觸發詞識別

易士翔 尹宏鵬 鄭恒毅

易士翔, 尹宏鵬, 鄭恒毅. 基于BiLSTM的公共安全事件觸發詞識別[J]. 工程科學學報, 2019, 41(9): 1201-1207. doi: 10.13374/j.issn2095-9389.2019.09.012
引用本文: 易士翔, 尹宏鵬, 鄭恒毅. 基于BiLSTM的公共安全事件觸發詞識別[J]. 工程科學學報, 2019, 41(9): 1201-1207. doi: 10.13374/j.issn2095-9389.2019.09.012
YI Shi-xiang, YIN Hong-peng, ZHENG Heng-yi. Public security event trigger identification based on Bidirectional LSTM[J]. Chinese Journal of Engineering, 2019, 41(9): 1201-1207. doi: 10.13374/j.issn2095-9389.2019.09.012
Citation: YI Shi-xiang, YIN Hong-peng, ZHENG Heng-yi. Public security event trigger identification based on Bidirectional LSTM[J]. Chinese Journal of Engineering, 2019, 41(9): 1201-1207. doi: 10.13374/j.issn2095-9389.2019.09.012

基于BiLSTM的公共安全事件觸發詞識別

doi: 10.13374/j.issn2095-9389.2019.09.012
基金項目: 

國家自然科學基金資助項目 61773080

重慶市基礎科學與研究技術資助項目 cstc2015jcyjB0569

中央高校基本業務費資助項目 cqu2018CDHB1B04

中央高校基本業務費資助項目 2019CDYGZD001

詳細信息
    通訊作者:

    尹宏鵬, E-mail: yinhongpeng@gmail.com

  • 中圖分類號: TP391.1

Public security event trigger identification based on Bidirectional LSTM

More Information
  • 摘要: 提出基于雙向長短期記憶網絡(bidirectional long short-term memory,BiLSTM)和前向神經網絡的融合模型完成公共安全事件的觸發詞識別任務.首先通過BiLSTM提取整段文本的高層語義特征,避免了以往機器學習方法需要人工提取特征的問題,其次采用特征拼接并在前向神經網絡中識別并分類事件觸發詞.實驗結果表明相較于基準模型,本文方法在中文突發事件語料庫(Chinese emergency corpus,CEC)上取得了更為突出的性能,Micro-F1值為78.47%.此外本文討論了不同拼接特征在觸發詞識別任務中的重要性,對文本分析中3類特征(詞性、句法、實體)的重要程度進行了比較和分析,得出句法特征對于事件觸發詞識別任務助益最大的結論.

     

  • 圖  1  系統框架

    Figure  1.  System framework

    圖  2  LSTM神經元結構圖

    Figure  2.  Structural diagram of LSTM neurons

    圖  3  BiLSTM模型結構圖

    Figure  3.  Structural diagram of BiLSTM

    表  1  實驗環境所需軟件及下載地址

    Table  1.   Required software and download link

    軟件 版本號 地址
    TensorFlow 1.10 www.tensorflow.org
    Stanford CoreNLP 3.9.2 stanfordnlp.github.io/CoreNLP/
    LTP 3.4.0 ltp.ai
    libSVM 3.23 www.csie.ntu.edu.tw/~cjlin/libsvm/
    下載: 導出CSV

    表  2  CEC事件語料庫及常見觸發詞

    Table  2.   Statistics of CEC and common trigger words

    類型 篇數 句子 事件 常見觸發詞
    地震 45 292 682 震級、震源、震感
    交通事故 49 265 798 酒后駕駛、相撞、碰撞、追尾
    恐怖襲擊 30 273 456 恐怖組織、自殺式襲擊、劫持
    食物中毒 45 288 701 食物中毒、腐爛、嘔吐、腹瀉
    火災 31 260 496 火災、燒毀、濃煙、燃燒
    下載: 導出CSV

    表  3  模型性能比較

    Table  3.   Comparison of model performance

    模型 P/% R/% Micro-F1/%
    SVM[4] 76.45 71.04 73.65
    SVM+Embedding[5] 77.85 73.62 75.68
    CNN[18] 79.21 76.53 77.85
    本文模型 78.39 78.56 78.47
    下載: 導出CSV

    表  4  特征性能比較

    Table  4.   Comparison of features performance

    序號 特征 Micro-F1/%
    1 Ewg 76.61
    2 Ew+Eog(詞性標簽) 77.59
    3 Ew+Eog(實體類型) 78.18
    4 Ew+Eog(依存關系) 78.47
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Bj?rne J. Biomedical Event Extraction with Machine Learning [Dissertation]. Turku: University of Turku, 2014
    [2] Xuan X X, Liao T, Gao B B. Automatic extraction of Chinese event trigger word. Comput Digit Eng, 2015, 43(3): 457 doi: 10.3969/j.issn1672-9722.2015.03.026

    軒小星, 廖濤, 高貝貝. 中文事件觸發詞的自動抽取研究. 計算機與數字工程, 2015, 43(3): 457 doi: 10.3969/j.issn1672-9722.2015.03.026
    [3] He X Y, Li L S. Trigger detection based on bidirectional LSTM and two-stage method. J Chin Inform Process, 2017, 31(6): 147 doi: 10.3969/j.issn.1003-0077.2017.06.020

    何馨宇, 李麗雙. 基于雙向LSTM和兩階段方法的觸發詞識別. 中文信息學報, 2017, 31(6): 147 doi: 10.3969/j.issn.1003-0077.2017.06.020
    [4] Pyysalo S, Ohta T, Miwa M, et al. Event extraction across multiple levels of biological organization. Bioinformatics, 2012, 28(18): i575 doi: 10.1093/bioinformatics/bts407
    [5] Zhou D Y, Zhong D Y, He Y L. Event trigger identification for biomedical events extraction using domain knowledge. Bioinformatics, 2014, 30(11): 1587 doi: 10.1093/bioinformatics/btu061
    [6] Wei X M, Zhu Q, Lyu C, et al. A hybrid method to extract triggers in biomedical events. J Digit Inform Manage, 2015, 13(4): 298 http://smartsearch.nstl.gov.cn/paper_detail.html?id=1bf664c0d6c16db5dc030d6e4a7d251f
    [7] Lousteau-Cazalet C, Barakat A, Belaud J P, et al. A decision support system for eco-efficient biorefinery process comparison using a semantic approach. Comput Electron Agric, 2016, 127: 351 doi: 10.1016/j.compag.2016.06.020
    [8] Chen Z Y, Huang Y, Wang Y, et al. Unsupervised method for event trigger identification and classification. Foreign Electron Meas Technol, 2016, 35(7): 91 doi: 10.3969/j.issn.1002-8978.2016.07.022

    陳自巖, 黃宇, 王洋, 等. 一種非監督的事件觸發詞檢測和分類方法. 國外電子測量技術, 2016, 35(7): 91 doi: 10.3969/j.issn.1002-8978.2016.07.022
    [9] Wang Y, Wang J, Lin H F, et al. Bidirectional long short-term memory with CRF for detecting biomedical event trigger in FastText semantic space. BMC Bioinf, 2018, 19(Suppl 20): 507 http://www.ncbi.nlm.nih.gov/pubmed/30577839
    [10] Amami M, Elkhlifi A, Faiz R. Biological event extraction using SVM and composite kernel function//The Extraction and Knowledge Management Conference. Bordeaux, 2012: 333(Amami M, Elkhlifi A, Faiz R. Biological event extraction using SVM and composite kernel function//Conférence Internationale Francophone sur l'Extraction et la Gestion des Connaissances. Bordeaux, 2012: 333
    [11] Vanegas J A, Matos S, González F, et al. An overview of biomolecular event extraction from scientific documents. Comput Math Methods Med, 2015, 2015: 571381 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637451/
    [12] Wang Y, Wang J, Lin H F, et al. Biomedical event trigger detection based on bidirectional LSTM and CRF//2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). Kansas City, 2017: 445
    [13] Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model. J Mach Learn Res, 2003, 3: 1137 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=11468885&site=ehost-live
    [14] Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. New Orleans, 2018: 2227
    [15] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res, 2014, 15(1): 1929 http://dl.acm.org/citation.cfm?id=2670313&preflayout=flat
    [16] Lai S W. Word and Document Embeddings Based on Neural Network Approaches [Dissertation]. Beijing: The University of Chinese Academy of Sciences, 2016

    來斯惟. 基于神經網絡的詞和文檔語義向量表示方法研究[學位論文]. 北京: 中國科學院大學, 2016
    [17] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Minneapolis, 2019
    [18] Wang J, Li H L, An Y, et al. Biomedical event trigger detection based on convolutional neural network. Int J Data Min Bioinf, 2016, 15(3): 195 doi: 10.1504/IJDMB.2016.077067
  • 加載中
圖(3) / 表(4)
計量
  • 文章訪問數:  1288
  • HTML全文瀏覽量:  416
  • PDF下載量:  50
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-01-05
  • 刊出日期:  2019-09-01

目錄

    /

    返回文章
    返回