<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

自抗擾控制在推力矢量飛機大迎角機動中的應用

劉俊杰 陳增強 孫明瑋 孫青林

劉俊杰, 陳增強, 孫明瑋, 孫青林. 自抗擾控制在推力矢量飛機大迎角機動中的應用[J]. 工程科學學報, 2019, 41(9): 1187-1193. doi: 10.13374/j.issn2095-9389.2019.09.010
引用本文: 劉俊杰, 陳增強, 孫明瑋, 孫青林. 自抗擾控制在推力矢量飛機大迎角機動中的應用[J]. 工程科學學報, 2019, 41(9): 1187-1193. doi: 10.13374/j.issn2095-9389.2019.09.010
LIU Jun-jie, CHEN Zeng-qiang, SUN Ming-wei, SUN Qing-lin. Application of active disturbance rejection control in high-angle-of-attack maneuver for aircraft with thrust vector[J]. Chinese Journal of Engineering, 2019, 41(9): 1187-1193. doi: 10.13374/j.issn2095-9389.2019.09.010
Citation: LIU Jun-jie, CHEN Zeng-qiang, SUN Ming-wei, SUN Qing-lin. Application of active disturbance rejection control in high-angle-of-attack maneuver for aircraft with thrust vector[J]. Chinese Journal of Engineering, 2019, 41(9): 1187-1193. doi: 10.13374/j.issn2095-9389.2019.09.010

自抗擾控制在推力矢量飛機大迎角機動中的應用

doi: 10.13374/j.issn2095-9389.2019.09.010
基金項目: 

國家自然科學基金面上資助項目 61573199

國家自然科學基金面上資助項目 61573197

詳細信息
    通訊作者:

    陳增強, E-mail:chenzq@nankai.edu.cn

  • 中圖分類號: TP273

Application of active disturbance rejection control in high-angle-of-attack maneuver for aircraft with thrust vector

More Information
  • 摘要: 為實現推力矢量飛機的大迎角機動控制,提出一種基于自抗擾控制的三通道解耦控制策略.以第三代戰機F16公開數據為基礎,添加推力矢量模型,利用雙發推力矢量噴管組合偏轉產生大迎角機動的期望三軸力矩.在縱向、橫向和航向通道分別獨立設計自抗擾控制器,將系統中未建模動態、不確定性以及通道間的強耦合視作總擾動進行估計并補償,并在縱向和航向通道引入角速度阻尼反饋項,使原始飛行器開環動力學閉環近似為一個廣義對象,降低了自抗擾控制器的設計階次.選取眼鏡蛇機動和赫伯斯特機動兩種典型的過失速機動動作進行控制策略驗證,數值仿真結果表明,所設計的三通道獨立自抗擾控制器能夠消除通道間的強耦合,完成推力矢量飛機的大迎角機動控制.蒙特卡羅仿真測試表明,所提控制策略具有較強的魯棒性.

     

  • 圖  1  飛機模型及推力矢量示意圖

    Figure  1.  Schematic diagram of an aircraft model and thrust vector

    圖  2  大迎角機動三通道自抗擾控制器設計結構

    Figure  2.  Three-channel ADRC controller design for high-angle-of-attack maneuver

    圖  3  迎角通道自抗擾控制器設計示意圖

    Figure  3.  ADRC controller design for angle of attack

    圖  4  眼鏡蛇機動.(a) 迎角;(b) 側滑角

    Figure  4.  Cobra maneuver: (a) angle of attack; (b) sideslip angle

    圖  5  類赫伯斯特機動. (a) 迎角;(b) 側滑角;(c) 滾轉角速度;(d) 繞速度矢滾轉角;(e) 速度;(f) 航跡方位角;(g) 噴管偏轉情況;(h) 機動三維軌跡

    Figure  5.  Herbst-type maneuver: (a) angle of attack; (b) sideslip angle; (c) roll angular rate; (d) roll angle around the velocity vector; (e) flight speed; (f) velocity heading angle; (g) vector nozzle deflections; (h) trajectory curve

    圖  6  類赫伯斯特機動蒙特卡羅測試.(a) 迎角;(b) 側滑角

    Figure  6.  Herbst-type maneuver Monte Carlo test: (a) angle of attack; (b) sideslip angle

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhou C J, Zhu J H, Lei H M, et al. Robust decoupling inner-loop control for a post-stall maneuverable fighter. J Tsinghua Univ Sci Technol, 2015, 55(11): 1197 https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201511007.htm

    周池軍, 朱紀洪, 雷虎民, 等. 過失速機動飛機內回路魯棒解耦控制. 清華大學學報(自然科學版), 2015, 55(11): 1197 https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201511007.htm
    [2] Snell S A, Nns D F, Arrard W L. Nonlinear inversion flight control for a supermaneuverable aircraft. J Guid Control Dyn, 1992, 15(4): 976 doi: 10.2514/3.20932
    [3] Adams R J, Buffington J M, Banda S S. Design of nonlinear control laws for high-angle-of-attack flight. J Guid Control Dyn, 1994, 17(4): 737 doi: 10.2514/3.21262
    [4] Seshagiri S, Promtun E. Sliding mode control of F-16 longitudinal dynamics//Proceedings of 2008 American Control Conference. Seattle, 2008: 1770
    [5] Chiang R Y, Safonov M G, Haiges K, et al. A fixed H∞ controller for a supermaneuverable fighter performing the herbst maneuver. Automatica, 1993, 29(1): 111 doi: 10.1016/0005-1098(93)90176-T
    [6] Han J Q. From PID to active disturbance rejection control. IEEE Trans Ind Electron, 2009, 56(3): 900 doi: 10.1109/TIE.2008.2011621
    [7] Gao Z Q. On the centrality of disturbance rejection in automatic control. ISA Trans, 2014, 53(4): 850 doi: 10.1016/j.isatra.2013.09.012
    [8] Liu H X, Li S H. Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Trans Ind Electron, 2011, 59(2): 1171 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=66816082&site=ehost-live
    [9] Zheng Q, Chen Z Z, Gao Z Q. A practical approach to disturbance decoupling control. Control Eng Practice, 2009, 17(9): 1016 doi: 10.1016/j.conengprac.2009.03.005
    [10] Sun M W, Wang Z H, Wang Y K, et al. On low-velocity compensation of brushless DC servo in the absence of friction model. IEEE Trans Ind Electron, 2013, 60(9): 3897 doi: 10.1109/TIE.2012.2208434
    [11] Qiu D M, Sun M W, Wang Z H, et al. Practical wind-disturbance rejection for large deep space observatory antenna. IEEE Trans Control Syst Technol, 2014, 22(5): 1983 doi: 10.1109/TCST.2013.2296935
    [12] Dong J Y, Sun L, Li D H. Linear active disturbance rejection control for ball mill coal-pulverizing systems. Chin J Eng, 2015, 37(4): 509 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201504016.htm

    董君伊, 孫立, 李東海. 球磨機制粉系統的線性自抗擾控制. 工程科學學報, 2015, 37(4): 509 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201504016.htm
    [13] Godbole A A, Talole S E. Extending the operating range of linear controller by means of ESO//International Conference on Computational Intelligence and Information Technology. Pune, 2011: 44
    [14] Chen S, Xue W C, Huang Y. Active disturbance rejection control and control allocation for thrust-vectored aircraft. Control Theory Appl, 2018, 35(11): 1591 doi: 10.7641/CTA.2018.80403

    陳森, 薛文超, 黃一. 推力矢量飛行器的自抗擾控制設計及控制分配. 控制理論與應用, 2018, 35(11): 1591 doi: 10.7641/CTA.2018.80403
    [15] Sonneveldt L. Nonlinear F-16 Model Description [Dissertation]. Netherlands: Delft University of Technology, 2006
  • 加載中
圖(6)
計量
  • 文章訪問數:  1077
  • HTML全文瀏覽量:  410
  • PDF下載量:  41
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-12-02
  • 刊出日期:  2019-09-01

目錄

    /

    返回文章
    返回