<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

具有狀態約束與輸入飽和的全向移動機器人自適應跟蹤控制

鄭文昊 賈英民

鄭文昊, 賈英民. 具有狀態約束與輸入飽和的全向移動機器人自適應跟蹤控制[J]. 工程科學學報, 2019, 41(9): 1176-1186. doi: 10.13374/j.issn2095-9389.2019.09.009
引用本文: 鄭文昊, 賈英民. 具有狀態約束與輸入飽和的全向移動機器人自適應跟蹤控制[J]. 工程科學學報, 2019, 41(9): 1176-1186. doi: 10.13374/j.issn2095-9389.2019.09.009
ZHENG Wen-hao, JIA Ying-min. Adaptive tracking control for omnidirectional mobile robots with full-state constraints and input saturation[J]. Chinese Journal of Engineering, 2019, 41(9): 1176-1186. doi: 10.13374/j.issn2095-9389.2019.09.009
Citation: ZHENG Wen-hao, JIA Ying-min. Adaptive tracking control for omnidirectional mobile robots with full-state constraints and input saturation[J]. Chinese Journal of Engineering, 2019, 41(9): 1176-1186. doi: 10.13374/j.issn2095-9389.2019.09.009

具有狀態約束與輸入飽和的全向移動機器人自適應跟蹤控制

doi: 10.13374/j.issn2095-9389.2019.09.009
基金項目: 

國家自然科學基金資助項目 61327807

國家自然科學基金資助項目 61521091

國家自然科學基金資助項目 61520106010

國家自然科學基金資助項目 61134005

國家重點基礎研究發展規劃資助項目 2012CB821200

國家重點基礎研究發展規劃資助項目 2012CB821201

詳細信息
    通訊作者:

    賈英民, E-mail:ymjia@buaa.edu.cn

  • 中圖分類號: TP242.6

Adaptive tracking control for omnidirectional mobile robots with full-state constraints and input saturation

More Information
  • 摘要: 研究了全狀態約束與輸入飽和情況下的全向移動機器人軌跡跟蹤控制問題.首先,針對一類三輪驅動的全向移動機器人,考慮系統存在模型參數不確定與外部擾動,建立了運動學與動力學模型;其次,利用障礙Lyapunov函數,結合反步設計方法,有效處理全向移動機器人跟蹤過程中存在的狀態約束,保證所有狀態變量不會超出狀態約束的限制區域;然后,針對系統參數不確定和未知有界擾動,設計相應的自適應律進行處理;同時,提出一種抗飽和補償器保證機器人輸入力矩滿足飽和約束;并且利用Lyapunov理論分析證明了當選取合適的控制參數時閉環系統中的所有信號均能保證一致有界;最后,通過與未考慮狀態約束和輸入飽和的控制器以及經典比例-微分控制器進行仿真對比,驗證了該方法的有效性和魯棒性.

     

  • 圖  1  三輪全向移動機器人與受力分析. (a)機器人示意圖;(b)受力分析

    Figure  1.  Three-wheeled omnidirectional mobile robot and force analysis: (a) schematic of the robot; (b) force analysis

    圖  2  在控制器(20)作用下的q1 (a)和q2(b)跟蹤性能

    Figure  2.  Tracking performance of q1 (a) and q2 (b) with the proposed controller (20)

    圖  3  在控制器(20)作用下的z1 (a)和z2 (b)的收斂特性

    Figure  3.  Convergence of z1(a) and z2 (b) with the controller (20)

    圖  4  控制器(20)作用下的自適應參數更新律(a)和輔助系統狀態(b)

    Figure  4.  Adaptive laws (a) and auxiliary system status (b) with the controller (20)

    圖  5  控制器(20)作用下的輸出力矩

    Figure  5.  Input torque with the proposed controller (20)

    圖  6  控制器(30)作用下的q1 (a)和q2(b)跟蹤性能

    Figure  6.  Tracking performance of q1 (a) and q2 (b) with the proposed controller (30)

    圖  7  在控制器(30)作用下的z1 (a)和z2 (b)的收斂特性

    Figure  7.  Convergence of z1 (a) and z2 (b) with the controller (30)

    圖  8  控制器(30)下的輸入力矩

    Figure  8.  Input torque with the controller (30)

    圖  9  在PD控制器(31)作用下q1 (a)和q2 (b)跟蹤性能

    Figure  9.  Tracking performance of q1 (a) and q2 (b) with the PD controller (31)

    圖  10  PD控制器(31)下的輸入力矩

    Figure  10.  Input torque with the PD controller (31)

    表  1  全向移動機器人的物理參數

    Table  1.   Physical parameters of the omnidirectional mobile robot

    數值 機器人質量,
    m/kg
    質心到輪子中心垂線距離,L/m 輪子半徑,
    r/m
    黏滯摩擦系數,
    c/(kg·m2·s-1)
    機器人轉動慣量,IR/(kg·m2) 輪子轉動慣量,
    Iw/(kg·m2)
    減速機倍數,n
    實際值 10 0.50 0.100 0.01 20 0.10 1
    標稱值 8 0.55 0.005 0.12 25 0.12 1
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Kramer J, Scheutz M. Development environments for autonomous mobile robots: a survey. Auton Robot, 2007, 22(2): 101 doi: 10.1007/s10514-006-9013-8
    [2] Watanabe K, Shiraishi Y, Tzafestas S G, et al. Feedback control of an omnidirectional autonomous platform for mobile service robots. J Intell Rob Syst, 1998, 22(3-4): 315 http://www.springerlink.com/content/t517772768520pn8/
    [3] Al Mamun M A, Nasir M T, Khayyat A. Embedded system for motion control of an omnidirectional mobile robot. IEEE Access, 2018, 6: 6722 doi: 10.1109/ACCESS.2018.2794441
    [4] Kalmár-Nagy T, D'Andrea R, Ganguly P. Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle. Robot Auton Syst, 2004, 46(1): 47 doi: 10.1016/j.robot.2003.10.003
    [5] Purwin O, D'Andrea R. Trajectory generation and control for four wheeled omnidirectional vehicles. Robot Auton Syst, 2006, 54(1): 13 doi: 10.1016/j.robot.2005.10.002
    [6] Liu Y, Zhu J J, Williams Ⅱ R L, et al. Omni-directional mobile robot controller based on trajectory linearization. Robot Auton Syst, 2008, 56(5): 461 doi: 10.1016/j.robot.2007.08.007
    [7] Indiveri G. Swedish wheeled omnidirectional mobile robots: kinematics analysis and control. IEEE Trans Rob, 2009, 25(1): 164 doi: 10.1109/TRO.2008.2010360
    [8] Hashemi E, Jadidi M G, Jadidi N G. Model-based PI-fuzzy control of four-wheeled omni-directional mobile robots. Robot Auton Syst, 2011, 59(11): 930 doi: 10.1016/j.robot.2011.07.002
    [9] Huang H C, Tsai C C. Adaptive trajectory tracking and stabilization for omnidirectional mobile robot with dynamic effect and uncertainties. IFAC Proc Vol, 2008, 41(2): 5383 doi: 10.3182/20080706-5-KR-1001.00907
    [10] Wang M M, Zhu Y Y, Zhang L, et al. An adaptive robust controller for a mobile robot driven by Mecanum wheels. J Northwest Polytech Univ, 2018, 36(4): 627 doi: 10.3969/j.issn.1000-2758.2018.04.004

    王明明, 朱瑩瑩, 張磊, 等. 麥克納姆輪驅動的移動機器人自適應滑模控制器設計. 西北工業大學學報, 2018, 36(4): 627 doi: 10.3969/j.issn.1000-2758.2018.04.004
    [11] Alakshendra V, Chiddarwar S S. Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn, 2017, 87(4): 2147 doi: 10.1007/s11071-016-3179-1
    [12] Xu D, Zhao D B, Yi J Q, et al. Trajectory tracking control of omnidirectional wheeled mobile manipulators: robust neural network-based sliding mode approach. IEEE Trans Syst Man Cybern Part B Cybern, 2009, 39(3): 788 doi: 10.1109/TSMCB.2008.2009464
    [13] Kang S Z, Wu H T. Research on fuzzy adaptive sliding mode control of omni-directional mobile robot. Mach Des Manuf Eng, 2017, 46(3): 70 doi: 10.3969/j.issn.2095-509X.2017.03.014

    康升征, 吳洪濤. 全向移動機器人模糊自適應滑模控制方法研究. 機械設計與制造工程, 2017, 46(3): 70 doi: 10.3969/j.issn.2095-509X.2017.03.014
    [14] Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45(4): 918 doi: 10.1016/j.automatica.2008.11.017
    [15] Liu Y J, Li D J, Tong S C. Adaptive output feedback control for a class of nonlinear systems with full-state constraints. Int J Control, 2014, 87(2): 281 doi: 10.1080/00207179.2013.828854
    [16] Liu Y J, Tong S C. Barrier Lyapunov Functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica, 2016, 64: 70 doi: 10.1016/j.automatica.2015.10.034
    [17] Bai R. Neural network control-based adaptive design for a class of DC motor systems with the full state constraints. Neurocomputing, 2015, 168: 65 doi: 10.1016/j.neucom.2015.04.090
    [18] Meng W C, Yang Q M, Sun Y X. Adaptive neural control of nonlinear MIMO systems with time-varying output constraints. IEEE Trans Neural Networks Learn Syst, 2015, 26(5): 1074 doi: 10.1109/TNNLS.2014.2333878
    [19] Ding L, Li S, Liu Y J, et al. Adaptive neural network-based tracking control for full-state constrained wheeled mobile robotic system. IEEE Trans Syst Man Cybern Syst, 2017, 47(8): 2410 doi: 10.1109/TSMC.2017.2677472
    [20] Wang C X, Wu Y Q. Finite-time tracking control for strict-feedback nonlinear systems with full state constraints. Int J Control, 2017, 46(7): 1
    [21] Chen X H, Jia Y M, Matsuno F. Tracking control for differential-drive mobile robots with diamond-shaped input constraints. IEEE Trans Control Syst Technol, 2014, 22(5): 1999 doi: 10.1109/TCST.2013.2296900
    [22] Liu C X, Gao J, Xu D M. Lyapunov-based model predictive control for tracking of nonholonomic mobile robots under input constraints. Int J Control Autom Syst, 2017, 15(5): 2313 doi: 10.1007/s12555-016-0350-x
    [23] Chen M, Ge S S, Ren B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica, 2011, 47(3): 452 doi: 10.1016/j.automatica.2011.01.025
    [24] Wen C Y, Zhou J, Liu Z T, et al. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans Autom Control, 2011, 56(7): 1672 doi: 10.1109/TAC.2011.2122730
    [25] Khalil H K. Nonlinear Systems. 3rd Ed. London: Prentice Hall Inc, 2002
  • 加載中
圖(10) / 表(1)
計量
  • 文章訪問數:  1245
  • HTML全文瀏覽量:  615
  • PDF下載量:  98
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-01-11
  • 刊出日期:  2019-09-01

目錄

    /

    返回文章
    返回