<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

石墨烯含量對石墨烯/Al-15Si-4Cu-Mg復合材料微觀組織和力學性能的影響

水麗 張凱 于宏

水麗, 張凱, 于宏. 石墨烯含量對石墨烯/Al-15Si-4Cu-Mg復合材料微觀組織和力學性能的影響[J]. 工程科學學報, 2019, 41(9): 1162-1167. doi: 10.13374/j.issn2095-9389.2019.09.007
引用本文: 水麗, 張凱, 于宏. 石墨烯含量對石墨烯/Al-15Si-4Cu-Mg復合材料微觀組織和力學性能的影響[J]. 工程科學學報, 2019, 41(9): 1162-1167. doi: 10.13374/j.issn2095-9389.2019.09.007
SHUI Li, ZHANG Kai, YU Hong. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al-15Si-4Cu-Mg matrix composites[J]. Chinese Journal of Engineering, 2019, 41(9): 1162-1167. doi: 10.13374/j.issn2095-9389.2019.09.007
Citation: SHUI Li, ZHANG Kai, YU Hong. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al-15Si-4Cu-Mg matrix composites[J]. Chinese Journal of Engineering, 2019, 41(9): 1162-1167. doi: 10.13374/j.issn2095-9389.2019.09.007

石墨烯含量對石墨烯/Al-15Si-4Cu-Mg復合材料微觀組織和力學性能的影響

doi: 10.13374/j.issn2095-9389.2019.09.007
詳細信息
    通訊作者:

    水麗, E-mail: shuilisy@163.com

  • 中圖分類號: TB333

Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al-15Si-4Cu-Mg matrix composites

More Information
  • 摘要: 低溫球磨分散結合真空熱壓燒結工藝制備了石墨烯增強的Al-15Si-4Cu-Mg基復合材料.采用掃描電鏡、X射線衍射、能譜分析和透射電鏡表征了復合材料微觀結構,通過抗拉強度和硬度測試,研究了石墨烯添加量對石墨烯/Al-15Si-4Cu-Mg復合材料微觀組織和力學性能的影響.結果表明:當石墨烯質量分數分別為0.4%和0.8%,石墨烯沿基體晶界均勻分布,釘扎晶界,石墨烯與Al-15Si-4Cu-Mg基體界面結合良好,初晶β-Si、Mg2Si和Al2Cu相彌散分布于基體中.當石墨烯質量分數上升至1%,石墨烯分散困難,過量石墨烯富集于晶粒邊界處,誘發脆性魚骨狀Al4Cu2Mg8Si7相沿晶界析出.當石墨烯質量分數為0.8%時,石墨烯/Al-15Si-4Cu-Mg復合材料的拉伸強度和硬度分別達到321 MPa和HV 98,相比純Al-15Si-4Cu-Mg復合材料分別提高了19.3%和46.2%;當石墨烯質量分數為0.4%時,復合材料的屈服強度高達221 MPa,硬度和塑性亦獲得明顯改善.

     

  • 圖  1  石墨烯納米片(GNFs)的掃描電鏡形貌(a),X射線衍射圖譜(b)以及Raman光譜比較(c)

    Figure  1.  Morphology and Raman spectra of the graphene nanoflakes(GNFs): (a) SEM image; (b)XRD pattern; (c) comparing of Raman spectra

    圖  2  GNFs/Al-15Si-4Cu-Mg復合材料的微觀組織(a)和能譜分析(b)

    Figure  2.  Morphology (a) and EDS-date analysis (b) of GNFs/Al-15Si-4Cu-Mg specimen with 0.8% GNFs: (a) SEM image; (b)EDS date analysis

    圖  3  GNFs/Al-15Si-4Cu-Mg復合材料(質量分數0.4%)室溫拉伸斷裂后的微觀組織

    Figure  3.  TEM images of GNFs/Al-15Si-4Cu-Mg composite (a) interface of graphene and matrix (b) GNFs dispersion in matrix

    圖  4  1.0% GNFs添加量GNFs/Al-15Si-4Cu-Mg復合材料形貌(a)與X射線衍射圖譜(b)

    Figure  4.  SEM image (a) and XRD pattern (b) of GNFs/Al-15Si-4Cu-Mg for 1.0% GNFs

    圖  5  GNFs/Al-15Si-4Cu-Mg復合材料的應力-應變曲線

    Figure  5.  Stress-strain curves and tensile properties of the GNFs/Al-15Si-4Cu-Mg composites at room temperature

    圖  6  GNFs/Al-15Si-4Cu-1Mg復合材料的斷口形貌. (a) 0.4% GNFs; (b) 1.0% GNFs

    Figure  6.  Fracture morphology of the GNFs/Al-15Si-4Cu-Mg composites: (a) 0.4% GNFs; (b) 1.0% GNFs

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li J L, Wang X D, Wu Y, et al. Microstructure and mechanical properties of aluminum-matrix composite with different graphene contents. Chin J Rare Met, 2018, 42(3): 252 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201803005.htm

    李炯利, 王旭東, 武岳, 等. 石墨烯含量對鋁基復合材料微觀組織和力學性能的影響. 稀有金屬, 2018, 42(3): 252 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS201803005.htm
    [2] Matsuda K, Ikeno S, Uetani Y, et al. Metastable phases in an Al-Mg-Si alloy containing copper. Metall Mater Trans A, 2001, 32(6): 1293 doi: 10.1007/s11661-001-0219-2
    [3] Selvakumar S, Dinaharan I, Palanivel R, et al. Development of stainless steel particulate reinforced AA6082 aluminum matrix composites with enhanced ductility using friction stir processing. Mater Sci Eng A, 2017, 685: 317 doi: 10.1016/j.msea.2017.01.022
    [4] Yan S J, Dai S L, Zhang X Y, et al. Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng A, 2014, 612: 440 doi: 10.1016/j.msea.2014.06.077
    [5] Guan R G, Lian C, Zhao Z Y, et al. Study on preparation of graphene and Al-graphene composite. Rare Met Mater Eng, 2012, 42(Suppl 2): 607 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2147.htm

    管仁國, 連超, 趙占勇, 等. 石墨烯鋁基復合材料的制備及其性能. 稀有金屬材料與工程, 2012, 42(增刊2): 607 https://www.cnki.com.cn/Article/CJFDTOTAL-COSE2012S2147.htm
    [6] Wang J Y, Li Z Q, Fan G L, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater, 2012, 66(8): 594 doi: 10.1016/j.scriptamat.2012.01.012
    [7] Xu Z S, Shi X L, Zhai W Z, et al. Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene. Carbon, 2014, 67: 168 doi: 10.1016/j.carbon.2013.09.077
    [8] Kumar K K A, Pillai U T S, Pai B C, et al. Dry sliding wear behavior of Mg-Si alloys. Wear, 2013, 303(1-2): 56 doi: 10.1016/j.wear.2013.02.020
    [9] Yolshina L A, Muradymow R V, Korsun I V, et al. Novel aluminum-graphene and aluminum-graphite metallic composite materials: synthesis and properties. J Alloys Compd, 2016, 663: 449 doi: 10.1016/j.jallcom.2015.12.084
    [10] Bastwros M, Kim G Y, Zhu C, et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites Part B, 2014, 60: 111 doi: 10.1016/j.compositesb.2013.12.043
    [11] Boostani A F, Tahamtan S, Jiang Z Y, et al. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Composites Part A, 2015, 68: 155 doi: 10.1016/j.compositesa.2014.10.010
    [12] Shin S E, Bae D H. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Composites Part A, 2015, 78: 42 http://smartsearch.nstl.gov.cn/paper_detail.html?id=08b4f53c0500eeee9b21fb11b6b103b9
    [13] Qi T J, Yu Z M, Xu Z P, et al. Preparation and mechanical properties of graphene reinforced aluminum composites. J Harbin Univ Sci Technol, 2015, 20(3): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX201503012.htm

    齊天嬌, 俞澤民, 許志鵬, 等. 石墨烯增強鋁基復合材料制備及力學性能研究. 哈爾濱理工大學學報, 2015, 20(3): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-HLGX201503012.htm
    [14] Xu Y C. Research on Friction and Wear and Cutting Performance of Graphene/Al-Si Composites [Dissertation]. Shenyang: Shenyang Ligong University, 2018

    徐運超. 石墨烯/Al-Si復合材料摩擦磨損及切削特性的研究[學位論文]. 沈陽: 沈陽理工大學, 2018
    [15] Tjong S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R, 2013, 74(10): 281 doi: 10.1016/j.mser.2013.08.001
    [16] Rong X D, Huang L J, Wang B, et al. Effects of heat treatment on microstructure and properties of TiBw/Ti60 composites with network microstructure. Acta Mater Compos Sin, 2015, 32(6): 1729 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201506024.htm

    戎旭東, 黃陸軍, 王博, 等. 熱處理對網狀結構TiBw/Ti60復合材料組織與性能的影響. 復合材料學報, 2015, 32(6): 1729 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201506024.htm
    [17] Yang Q, Xei W H, Meng S H, et al. Multi-scale analysis method of composites and damage simulation of typical component under tensile load. Acta Mater Compos Sin, 2015, 32(3): 617 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201503001.htm

    楊強, 解維華, 孟松鶴, 等. 復合材料多尺度分析方法與典型元件拉伸損傷模擬. 復合材料學報, 2015, 32(3): 617 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201503001.htm
    [18] Jiang L L, Xu M L, Li Z G, et al. Experimental investigation on thermo-physical properties of 3D braided composites. Acta Mater Compos Sin, 2017, 34(12): 2734 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201712013.htm

    姜黎黎, 徐美玲, 李振國, 等. 三維編織復合材料熱物理性能實驗. 復合材料學報, 2017, 34(12): 2734 https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201712013.htm
    [19] Li J L, Li S S, Fan Z Z, et al. Preparation of super high strength bulk nanocrystalline Al by cryomilling. Chin J Nonferrous Met, 2013, 23(5): 1182 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305001.htm

    李炯利, 厲沙沙, 樊振中, 等. 低溫球磨制備超高強度塊體納米晶純鋁. 中國有色金屬學報, 2013, 23(5): 1182 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201305001.htm
  • 加載中
圖(6)
計量
  • 文章訪問數:  1023
  • HTML全文瀏覽量:  407
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-08-10
  • 刊出日期:  2019-09-01

目錄

    /

    返回文章
    返回