<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

S355海洋鋼表面微弧氧化復合膜層耐蝕性能

賀星 孔德軍 宋仁國

賀星, 孔德軍, 宋仁國. S355海洋鋼表面微弧氧化復合膜層耐蝕性能[J]. 工程科學學報, 2019, 41(9): 1152-1161. doi: 10.13374/j.issn2095-9389.2019.09.006
引用本文: 賀星, 孔德軍, 宋仁國. S355海洋鋼表面微弧氧化復合膜層耐蝕性能[J]. 工程科學學報, 2019, 41(9): 1152-1161. doi: 10.13374/j.issn2095-9389.2019.09.006
HE Xing, KONG De-jun, SONG Ren-guo. Corrosion resistance of micro-arc oxidation composite coatings on S355 offshore steel[J]. Chinese Journal of Engineering, 2019, 41(9): 1152-1161. doi: 10.13374/j.issn2095-9389.2019.09.006
Citation: HE Xing, KONG De-jun, SONG Ren-guo. Corrosion resistance of micro-arc oxidation composite coatings on S355 offshore steel[J]. Chinese Journal of Engineering, 2019, 41(9): 1152-1161. doi: 10.13374/j.issn2095-9389.2019.09.006

S355海洋鋼表面微弧氧化復合膜層耐蝕性能

doi: 10.13374/j.issn2095-9389.2019.09.006
基金項目: 

江蘇省重點研發計劃資助項目 BE2016052

詳細信息
    通訊作者:

    宋仁國, E-mail: songrg@hotmail.com

  • 中圖分類號: TG174.44

Corrosion resistance of micro-arc oxidation composite coatings on S355 offshore steel

  • 摘要: 采用激光熔覆與微弧氧化技術相結合在海洋鋼表面制備了復合膜層.運用掃描電子顯微鏡(SEM)、能譜儀(EDS)和X射線衍射儀(XRD)表征復合膜層的微觀結構,采用極化曲線、電化學阻抗譜、腐蝕磨損實驗和浸泡腐蝕實驗等測試方法研究膜層在質量分數3.5%的NaCl水溶液中腐蝕行為,并與熔覆涂層和基體進行對比.結果表明:復合膜層主要分為內致密層和外疏松層,疏松層主要由γ-Al2O3組成,致密層主要由α-Al2O3組成,與基底層結合較好,復合膜層表面硬度最大能達到HV0.2 1423.3,比熔覆涂層高47.6%,其硬度較S355海洋鋼有顯著提升.基體在腐蝕和磨損交互作用中主要以腐蝕加速磨損為主,涂層在交互作用中主要以磨損加速腐蝕為主,在經過微弧氧化處理后,膜層的自腐蝕電位負移,鈍態電流密度上升,抗磨蝕性能明顯提高.熔覆涂層的浸泡腐蝕方式以點蝕為主,復合膜層腐蝕較輕微,阻抗模值最大能達到105.3 Ω·cm2,比熔覆層提高兩個數量級,這表明復合處理可進一步提高涂層的耐腐蝕性.

     

  • 圖  1  復合涂層截面形貌(a)與微弧氧化層形貌(b)

    Figure  1.  Cross-sectional morphologies of the composite coating (a) and MAO layer (b)

    圖  2  不同制備方式下涂層表面X射線衍射圖譜. (a) LC; (b) LC+MAO

    Figure  2.  XRD patterns of the coatings prepared by different methods: (a) LC; (b) LC+MAO

    圖  3  不同制備方式下涂層表面形貌及能譜圖. (a, b) LC; (c, d) LC+MAO

    Figure  3.  Surface morphologies and EDS analysis results of the coatings prepared by different methods: (a, b) LC; (c, d) LC+MAO

    圖  4  復合膜層顯微硬度分布

    Figure  4.  Microhardness distribution of the composite coating

    圖  5  不同制備方式下涂層在3.5%NaCl溶液中磨損后的形貌. (a) LC; (b) LC+MAO

    Figure  5.  Surface morphologies of coatings prepared by different methods after abrasion in 3.5% NaCl solution: (a) LC; (b) LC+MAO

    圖  6  不同狀態下基體與涂層的Tafel極化曲線. (a) 靜態; (b) 磨損狀態

    Figure  6.  Potentiodynamic polarization of the substrate and coating at different states: (a) static state; (b) wear state

    圖  7  基體與涂層的腐蝕和磨損以及材料總損失的交互作用.(a)交互作用;(b)磨損速率;(c)腐蝕速率;(d)總損失率

    Figure  7.  Synergetic contributions of corrosion and wear to each other and total material loss of coatings after abrasion in 3.5% NaCl solution: (a) synergetic effect; (b) wear rate; (c) corrosion rate; (d) total loss rate

    圖  8  不同制備方式下涂層浸泡后表面形貌與能譜圖. (a, b) LC; (c, d) LC+MAO

    Figure  8.  Surface morphologies and EDS analysis results of coatings prepared by different methods after immersion: (a, b) LC; (c, d) LC+MAO

    圖  9  涂層與基體在3.5%NaCl溶液中的Nyquist圖(a)和Bode圖(b)

    Figure  9.  Nyquist (a) and Bode (b) plots of the substrate and coating in 3.5% NaCl solution

    圖  10  阻抗譜等效電路圖. (a)基體;(b)涂層

    Figure  10.  Equivalent circuits of the EIS plots: (a) substrate; (b) coating

    圖  11  復合膜層浸泡腐蝕后截面形貌.(a) 復合膜層;(b) 1和2區域細節

    Figure  11.  Cross-sectional morphologies of the composite coating after immersion corrosion: (a) composite coating; (b) details of areas 1 and 2

    表  1  激光熔覆工藝參數

    Table  1.   Laser cladding process parameters

    功率/kW 掃描速度/(mm·min-1) 送粉率/(g·min-1) 氬氣流速/(L·min-1) 光斑直徑/mm
    1.2 360 8 15 3
    下載: 導出CSV

    表  2  基體與涂層電化學阻抗圖譜的擬合數據

    Table  2.   Fitting data of EIS related to substrate and coating

    試樣 Rs/(Ω·cm2) Qb/(Ω-1·s-nb·cm-2) nb Rb/(kΩ·cm2) Qt/(Ω-1·s-nt·cm-2) nt Rt/(kΩ·cm2)
    S355 6.26 1.083×10-3 0.8 0.735
    LC 4.67 6.06×10-6 0.88 1.95 4.48×10-5 0.87 12.8
    LC+MAO 6.24 7.47×10-6 0.75 8.48 4.11×10-5 0.83 82.4
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Hao W K, Liu Z Y, Wang X Z, et al. Current situation and prospect of studies on strength and corrosion resistance of high strength steel for ocean platform. Equip Environ Eng, 2014, 11(2): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201402011.htm

    郝文魁, 劉智勇, 王顯宗, 等. 海洋平臺用高強鋼強度及其耐蝕性現狀及發展趨勢. 裝備環境工程, 2014, 11(2): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201402011.htm
    [2] Zhang Q X, Xu M, Wang X T, et al. Research progress of heavy-duty anticorrosive coating applied on marine steel structure. Equip Environ Eng, 2015, 12(4): 60 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201504014.htm

    張巧霞, 許沫, 王秀通, 等. 重防腐涂料在海洋工程鋼結構中的研究進展. 裝備環境工程, 2015, 12(4): 60 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201504014.htm
    [3] Chen Y J, Feng C J, Shao Z S, et al. Research progress of micro-arc oxidation on the aluminum alloys. Mater Rev, 2010, 24(5): 132 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201009035.htm

    陳妍君, 馮長杰, 邵志松, 等. 鋁合金微弧氧化技術的研究進展. 材料導報, 2010, 24(5): 132 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201009035.htm
    [4] Xie S Y, Wang C Z, Kou B D, et al. Research of hot-dip aluminum and micro arc oxidation on surface of carbon steel. Light Alloy Fabric Technol, 2003, 31(9): 35 doi: 10.3969/j.issn.1007-7235.2003.09.012

    解世岳, 王從曾, 寇斌達, 等. 碳鋼熱浸鍍鋁及微弧氧化研究. 輕合金加工技術, 2003, 31(9): 35 doi: 10.3969/j.issn.1007-7235.2003.09.012
    [5] Tao J D, Zhao Z L, Hu P, et al. Microstructure characteristics of hot-dip aluminum and micro-arc oxidation multilayer conversion coating on A3 steel. Electroplat Poll Control, 2010, 30(1): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-DDHB201001010.htm

    陶建東, 趙志龍, 胡鵬, 等. A3鋼熱浸鍍鋁層微弧氧化復合轉化層的微觀組織特性. 電鍍與環保, 2010, 30(1): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-DDHB201001010.htm
    [6] Huang Y L, Sun X F, Li Z M, et al. Study on composite treatment of 20 steel substrate by hot dip aluminum and micro-arc oxidation. J Acad Arm Force Eng, 2015, 29(3): 105 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJBX201503021.htm

    黃元林, 孫曉峰, 李占明, 等. 20鋼基體表面熱浸鍍鋁+微弧氧化復合處理研究. 裝甲兵工程學院學報, 2015, 29(3): 105 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJBX201503021.htm
    [7] Yuan Q L, Feng X D, Cao J J, et al. Research progress in laser cladding technology. Mater Rev, 2010, 24(2): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201003029.htm

    袁慶龍, 馮旭東, 曹晶晶, 等. 激光熔覆技術研究進展. 材料導報, 2010, 24(2): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201003029.htm
    [8] Cheng X Y, He K S, He J. Influence of CeO2 on tribological properties and microstructure of laser-cladding TiC4 ceramic layer. Tribology, 2010, 30(3): 250 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201003007.htm

    程西云, 何科杉, 何俊. 氧化鈰對鎳基碳化鈦復合涂層微觀結構及摩擦學性能影響. 摩擦學學報, 2010, 30(3): 250 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201003007.htm
    [9] He H B, Dai J Y, Yang M M, et al. Effect of CeO2 on microstructures and properties of Ni60A laser cladding layer. Ordn Mater Sci Eng, 2017, 40(6): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201706024.htm

    何驊波, 戴姣燕, 楊夢夢, 等. 稀土CeO2對Ni60A激光熔覆層組織與性能的影響. 兵器材料科學與工程, 2017, 40(6): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201706024.htm
    [10] Zhang H, Zhang C H, Wang Q, et al. Effect of Ni content on stainless steel fabricated by laser melting deposition. Opt Laser Technol, 2018, 101: 363 http://www.sciencedirect.com/science/article/pii/S0030399217312641
    [11] Yang W, Xu D P, Wang J L, et al. Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy. Corros Sci, 2018, 136: 174 http://www.sciencedirect.com/science/article/pii/S0010938X17319662
    [12] Xiong Y, Hu Q, Song R G, et al. LSP/MAO composite bio-coating on AZ80 magnesium alloy for biomedical application. Mater Sci Eng C, 2017, 75: 1299 http://www.ncbi.nlm.nih.gov/pubmed/28415419
    [13] Lu J P, Cao G P, Quan G F, et al. Effects of voltage on microstructure and corrosion resistance of micro-arc oxidation ceramic coatings formed on KBM10 magnesium alloy. J Mater Eng Perform, 2018, 27(1): 147 doi: 10.1007/s11665-017-3088-6
    [14] Liu X, Zhao X Q, An Y L, et al. Effects of loads on corrosion-wear synergism of NiCoCrAlYTa coating in artificial seawater. Tribol Int, 2018, 118: 421 http://www.sciencedirect.com/science/article/pii/S0301679X1730484X
    [15] Zhuang J J, Zhang X Y, Sun B, et al. Microarc oxidation coatings and corrosion behavior of 7050 aluminum alloy. Chin J Eng, 2017, 39(10): 1532 doi: 10.13374/j.issn2095-9389.2017.10.011

    莊俊杰, 張曉燕, 孫斌, 等. 微弧氧化對7050鋁合金腐蝕行為的影響. 工程科學學報, 2017, 39(10): 1532 doi: 10.13374/j.issn2095-9389.2017.10.011
  • 加載中
圖(11) / 表(2)
計量
  • 文章訪問數:  962
  • HTML全文瀏覽量:  562
  • PDF下載量:  36
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-08-14
  • 刊出日期:  2019-09-01

目錄

    /

    返回文章
    返回