Corrosion resistance of micro-arc oxidation composite coatings on S355 offshore steel
-
摘要: 采用激光熔覆與微弧氧化技術相結合在海洋鋼表面制備了復合膜層.運用掃描電子顯微鏡(SEM)、能譜儀(EDS)和X射線衍射儀(XRD)表征復合膜層的微觀結構,采用極化曲線、電化學阻抗譜、腐蝕磨損實驗和浸泡腐蝕實驗等測試方法研究膜層在質量分數3.5%的NaCl水溶液中腐蝕行為,并與熔覆涂層和基體進行對比.結果表明:復合膜層主要分為內致密層和外疏松層,疏松層主要由γ-Al2O3組成,致密層主要由α-Al2O3組成,與基底層結合較好,復合膜層表面硬度最大能達到HV0.2 1423.3,比熔覆涂層高47.6%,其硬度較S355海洋鋼有顯著提升.基體在腐蝕和磨損交互作用中主要以腐蝕加速磨損為主,涂層在交互作用中主要以磨損加速腐蝕為主,在經過微弧氧化處理后,膜層的自腐蝕電位負移,鈍態電流密度上升,抗磨蝕性能明顯提高.熔覆涂層的浸泡腐蝕方式以點蝕為主,復合膜層腐蝕較輕微,阻抗模值最大能達到105.3 Ω·cm2,比熔覆層提高兩個數量級,這表明復合處理可進一步提高涂層的耐腐蝕性.Abstract: Composite coatings were prepared by laser cladding combined with micro-arc oxidation technique on the surface of S355 offshore steel, and the composite coating structures were analyzed using scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. The corrosion behavior of the composite coating in 3.5% NaCl solution was investigated by polarization curve, electrochemical impedance spectroscopy, corrosive wear test, and immersion corrosion test, and compared with that of the cladding layer and substrate. The results show that the composite coating is mainly divided into inner dense layer and outer loose layer. The loose layer is mainly composed of γ-Al2O3, and the dense layer is mainly composed of α-Al2O3, and the surface hardness of the composite coating reaches the maximum value of HV0.2 1423.3, which is 47.6% higher than that of the cladding coating. Moreover, the surface hardness of S355 offshore steel is significantly improved. The interaction between corrosion and wear in the substrate is mainly corrosion-accelerating abrasion, whereas that in the coating is wear-accelerating corrosion. After micro-arc oxidation treatment, the corrosion potential of the composite coating moves negatively, the passive current density increases, the scale factor of wear-accelerated corrosion gradually decreases, and the corrosive wear resistance of the coating significantly improves. The immersion corrosion method of the cladding coating is mainly pitting corrosion, the composite coating is slightly corroded, and the maximum impedance modulus reaches 105.3 Ω·cm2, which is two orders of magnitude higher than that of the cladding coating. This finding indicates that the corrosive wear resistance of the coating can be further improved after composite treatment.
-
Key words:
- offshore steel /
- laser cladding /
- micro-arc oxidation /
- corrosion
-
表 1 激光熔覆工藝參數
Table 1. Laser cladding process parameters
功率/kW 掃描速度/(mm·min-1) 送粉率/(g·min-1) 氬氣流速/(L·min-1) 光斑直徑/mm 1.2 360 8 15 3 表 2 基體與涂層電化學阻抗圖譜的擬合數據
Table 2. Fitting data of EIS related to substrate and coating
試樣 Rs/(Ω·cm2) Qb/(Ω-1·s-nb·cm-2) nb Rb/(kΩ·cm2) Qt/(Ω-1·s-nt·cm-2) nt Rt/(kΩ·cm2) S355 6.26 — — — 1.083×10-3 0.8 0.735 LC 4.67 6.06×10-6 0.88 1.95 4.48×10-5 0.87 12.8 LC+MAO 6.24 7.47×10-6 0.75 8.48 4.11×10-5 0.83 82.4 www.77susu.com -
參考文獻
[1] Hao W K, Liu Z Y, Wang X Z, et al. Current situation and prospect of studies on strength and corrosion resistance of high strength steel for ocean platform. Equip Environ Eng, 2014, 11(2): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201402011.htm郝文魁, 劉智勇, 王顯宗, 等. 海洋平臺用高強鋼強度及其耐蝕性現狀及發展趨勢. 裝備環境工程, 2014, 11(2): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201402011.htm [2] Zhang Q X, Xu M, Wang X T, et al. Research progress of heavy-duty anticorrosive coating applied on marine steel structure. Equip Environ Eng, 2015, 12(4): 60 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201504014.htm張巧霞, 許沫, 王秀通, 等. 重防腐涂料在海洋工程鋼結構中的研究進展. 裝備環境工程, 2015, 12(4): 60 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201504014.htm [3] Chen Y J, Feng C J, Shao Z S, et al. Research progress of micro-arc oxidation on the aluminum alloys. Mater Rev, 2010, 24(5): 132 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201009035.htm陳妍君, 馮長杰, 邵志松, 等. 鋁合金微弧氧化技術的研究進展. 材料導報, 2010, 24(5): 132 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201009035.htm [4] Xie S Y, Wang C Z, Kou B D, et al. Research of hot-dip aluminum and micro arc oxidation on surface of carbon steel. Light Alloy Fabric Technol, 2003, 31(9): 35 doi: 10.3969/j.issn.1007-7235.2003.09.012解世岳, 王從曾, 寇斌達, 等. 碳鋼熱浸鍍鋁及微弧氧化研究. 輕合金加工技術, 2003, 31(9): 35 doi: 10.3969/j.issn.1007-7235.2003.09.012 [5] Tao J D, Zhao Z L, Hu P, et al. Microstructure characteristics of hot-dip aluminum and micro-arc oxidation multilayer conversion coating on A3 steel. Electroplat Poll Control, 2010, 30(1): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-DDHB201001010.htm陶建東, 趙志龍, 胡鵬, 等. A3鋼熱浸鍍鋁層微弧氧化復合轉化層的微觀組織特性. 電鍍與環保, 2010, 30(1): 25 https://www.cnki.com.cn/Article/CJFDTOTAL-DDHB201001010.htm [6] Huang Y L, Sun X F, Li Z M, et al. Study on composite treatment of 20 steel substrate by hot dip aluminum and micro-arc oxidation. J Acad Arm Force Eng, 2015, 29(3): 105 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJBX201503021.htm黃元林, 孫曉峰, 李占明, 等. 20鋼基體表面熱浸鍍鋁+微弧氧化復合處理研究. 裝甲兵工程學院學報, 2015, 29(3): 105 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJBX201503021.htm [7] Yuan Q L, Feng X D, Cao J J, et al. Research progress in laser cladding technology. Mater Rev, 2010, 24(2): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201003029.htm袁慶龍, 馮旭東, 曹晶晶, 等. 激光熔覆技術研究進展. 材料導報, 2010, 24(2): 112 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201003029.htm [8] Cheng X Y, He K S, He J. Influence of CeO2 on tribological properties and microstructure of laser-cladding TiC4 ceramic layer. Tribology, 2010, 30(3): 250 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201003007.htm程西云, 何科杉, 何俊. 氧化鈰對鎳基碳化鈦復合涂層微觀結構及摩擦學性能影響. 摩擦學學報, 2010, 30(3): 250 https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201003007.htm [9] He H B, Dai J Y, Yang M M, et al. Effect of CeO2 on microstructures and properties of Ni60A laser cladding layer. Ordn Mater Sci Eng, 2017, 40(6): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201706024.htm何驊波, 戴姣燕, 楊夢夢, 等. 稀土CeO2對Ni60A激光熔覆層組織與性能的影響. 兵器材料科學與工程, 2017, 40(6): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG201706024.htm [10] Zhang H, Zhang C H, Wang Q, et al. Effect of Ni content on stainless steel fabricated by laser melting deposition. Opt Laser Technol, 2018, 101: 363 http://www.sciencedirect.com/science/article/pii/S0030399217312641 [11] Yang W, Xu D P, Wang J L, et al. Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy. Corros Sci, 2018, 136: 174 http://www.sciencedirect.com/science/article/pii/S0010938X17319662 [12] Xiong Y, Hu Q, Song R G, et al. LSP/MAO composite bio-coating on AZ80 magnesium alloy for biomedical application. Mater Sci Eng C, 2017, 75: 1299 http://www.ncbi.nlm.nih.gov/pubmed/28415419 [13] Lu J P, Cao G P, Quan G F, et al. Effects of voltage on microstructure and corrosion resistance of micro-arc oxidation ceramic coatings formed on KBM10 magnesium alloy. J Mater Eng Perform, 2018, 27(1): 147 doi: 10.1007/s11665-017-3088-6 [14] Liu X, Zhao X Q, An Y L, et al. Effects of loads on corrosion-wear synergism of NiCoCrAlYTa coating in artificial seawater. Tribol Int, 2018, 118: 421 http://www.sciencedirect.com/science/article/pii/S0301679X1730484X [15] Zhuang J J, Zhang X Y, Sun B, et al. Microarc oxidation coatings and corrosion behavior of 7050 aluminum alloy. Chin J Eng, 2017, 39(10): 1532 doi: 10.13374/j.issn2095-9389.2017.10.011莊俊杰, 張曉燕, 孫斌, 等. 微弧氧化對7050鋁合金腐蝕行為的影響. 工程科學學報, 2017, 39(10): 1532 doi: 10.13374/j.issn2095-9389.2017.10.011 -