<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

球化組織對AISI 420型鋼淬回火特性及耐蝕性能的影響

呂穿江 張樂 陳旋 吳曉春

呂穿江, 張樂, 陳旋, 吳曉春. 球化組織對AISI 420型鋼淬回火特性及耐蝕性能的影響[J]. 工程科學學報, 2019, 41(9): 1142-1151. doi: 10.13374/j.issn2095-9389.2019.09.005
引用本文: 呂穿江, 張樂, 陳旋, 吳曉春. 球化組織對AISI 420型鋼淬回火特性及耐蝕性能的影響[J]. 工程科學學報, 2019, 41(9): 1142-1151. doi: 10.13374/j.issn2095-9389.2019.09.005
Lü Chuan-jiang, ZHANG Le, CHEN Xuan, WU Xiao-chun. Effect of spheroidized microstructure on quenching and tempering characteristics and corrosion resistance of AISI 420-type steel[J]. Chinese Journal of Engineering, 2019, 41(9): 1142-1151. doi: 10.13374/j.issn2095-9389.2019.09.005
Citation: Lü Chuan-jiang, ZHANG Le, CHEN Xuan, WU Xiao-chun. Effect of spheroidized microstructure on quenching and tempering characteristics and corrosion resistance of AISI 420-type steel[J]. Chinese Journal of Engineering, 2019, 41(9): 1142-1151. doi: 10.13374/j.issn2095-9389.2019.09.005

球化組織對AISI 420型鋼淬回火特性及耐蝕性能的影響

doi: 10.13374/j.issn2095-9389.2019.09.005
基金項目: 

國家重點研發計劃資助項目 2016YFB0300400

國家重點研發計劃資助項目 2016YFB0300404

詳細信息
    通訊作者:

    吳曉春, E-mail: wuxiaochun@t.shu.edu.cn

  • 中圖分類號: TG156.71

Effect of spheroidized microstructure on quenching and tempering characteristics and corrosion resistance of AISI 420-type steel

More Information
  • 摘要: 對比研究了兩種AISI 420型鋼球化組織的平均粒徑和圓整度,并對兩種鋼材進行了不同淬火和回火處理工藝.然后通過硬度測試、掃描電子顯微鏡(SEM)和X射線衍射儀(XRD)來比較球化組織對淬回火特性的影響,同時借助動電位極化曲線測試和質量分數3.5% NaCl溶液浸泡腐蝕來分析耐蝕性能的差異.結果表明:細小彌散的球化組織在淬火時可以提高AISI 420型鋼的C元素的固溶量,提高了其淬硬性,但是會提高殘留奧氏體的含量;尺寸更小的退火態碳化物可以使AISI 420型鋼的基體在奧氏體化過程中溶解更多的Cr元素,從而使得其在淬回火后基體Cr含量更高,減小貧Cr區產生幾率,最終顯示出更好的點蝕抗力;更少的大尺寸的未溶碳化物在腐蝕環境中降低了點蝕形核幾率,提高了AISI 420型鋼的耐蝕性能.所以在250℃回火時,AISI 420型鋼耐蝕性好且硬度高,在480℃回火后,耐蝕性最差.

     

  • 圖  1  球化組織原圖和處理圖. (a, b) 420-C; (c, d) 420-S

    Figure  1.  Original and processed image of spheroidized structure: (a, b) 420-C; (c, d) 420-S

    圖  2  420-C和420-S的退火態碳化物平均粒徑分布

    Figure  2.  Average particle size distribution of annealed carbides of 420-C and 420-S

    圖  3  退火態碳化物的圓整度分布. (a) 420-C; (b) 420-S

    Figure  3.  Roundness distribution of the annealed carbide: (a) 420-C; (b) 420-S

    圖  4  不同奧氏體化溫度淬火組織及能譜. (a) 420-C,1030 ℃; (b) 420-C,1070 ℃; (c) 420-S,1030 ℃; (d) 420-S,1070 ℃; (e) 420-C,1070 ℃未溶碳化物能譜

    Figure  4.  Quenched microstructure and energy spectrum of different austenitizing temperatures: (a) 420-C, 1030 ℃; (b) 420-C, 1070 ℃; (c) 420-S, 1030 ℃; (d) 420-S, 1070 ℃; (e) EDS of undissolved carbide for 420-C at 1070 ℃

    圖  5  硬度隨淬火溫度的變化曲線

    Figure  5.  Curves of hardness vs quenching at different temperatures

    圖  6  淬火態試樣X射線衍射圖譜. (a) 420-C; (b) 420-S

    Figure  6.  XRD diffraction patterns of quenched samples: (a) 420-C; (b) 420-S

    圖  7  硬度隨回火溫度的變化曲線

    Figure  7.  Curves of hardness versus tempering temperature

    圖  8  回火組織. (a) 420-C, 250 ℃; (b) 420-C, 460 ℃; (c) 420-C, 650 ℃; (d) 420-S, 250 ℃; (e) 420-S, 460 ℃; (f) 420-S, 650 ℃

    Figure  8.  Microstructure after tempering: (a) 420-C, 250 ℃; (b) 420-C, 460 ℃; (c) 420-C, 650 ℃; (d) 420-S, 250 ℃; (e) 420-S, 460 ℃; (f) 420-S, 650 ℃

    圖  9  不同回火溫度下動電位極化曲線. (a) 250 ℃; (b) 460 ℃; (c) 650 ℃

    Figure  9.  Dynamic potential polarization curves of two steels after different tempering temperatures: (a) 250 ℃; (b) 460 ℃; (c) 650 ℃

    圖  10  浸泡腐蝕48 h結果. (a)宏觀形貌; (b) 腐蝕速率; (c) 420-C的460 ℃回火試樣微觀形貌; (d) 420-S的460 ℃回火試樣微觀形貌

    Figure  10.  48 h immersion corrosion results: (a) macroscopic appearance; (b) corrosion rate; (c) microstructure of 420-C after tempered at 460 ℃; (d) microstructure of 420-S after tempered at 460 ℃

    表  1  試驗鋼的化學成分(質量分數)

    Table  1.   Chemical composition of tested steels ?%

    鋼種 C Si Mn Cr Mo Ni V S P Fe
    420-C 0.39 0.99 0.57 13.39 0.12 0.25 0.30 0.0040 0.022 余量
    420-S 0.35 0.90 0.49 13.36 0.13 0.21 0.30 0.0046 0.028 余量
    下載: 導出CSV

    表  2  淬火態試樣殘留奧氏體體積分數測定結果

    Table  2.   Retained austenite content of samples after quenching ?%

    鋼種 1010 ℃ 1030 ℃ 1050 ℃ 1070 ℃ 1090 ℃
    420-S 4.6 5.9 7.5 9.6 11.3
    420-C 5.3 13.7 22.8 20.2 21.3
    下載: 導出CSV

    表  3  動電位掃描結果

    Table  3.   Dynamic potential scan results

    鋼種 熱處理工藝 Ecorr/V (vs SCE) Epit/V (vs SCE)
    1030 ℃淬火+250 ℃回火 -0.188 0.02
    420-S 1030 ℃淬火+460 ℃回火 -0.313
    1030 ℃淬火+650 ℃回火 -0.203 -0.06
    1030 ℃淬火+250 ℃回火 -0.170 -0.07
    420-C 1030 ℃淬火+460 ℃回火 -0.319
    1030 ℃淬火+650 ℃回火 -0.187 -0.05
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Dalmau A, Richard C, Igual-Mu?oz A. Degradation mechanisms in martensitic stainless steels: wear, corrosion and tribocorrosion appraisal. Tribol Int, 2018, 121: 167 doi: 10.1016/j.triboint.2018.01.036
    [2] Geng H M, Wu X C, Wang H B, et al. Effects of copper content on the machinability and corrosion resistance of martensitic stainless steel. J Mater Sci, 2008, 43(1): 83 doi: 10.1007/s10853-007-2084-x
    [3] Abbasi-Khazaei B, Mollaahmadi A. Rapid tempering of martensitic stainless steel AISI420: microstructure, mechanical and corrosion properties. J Mater Eng Perform, 2017, 26(4): 1626 doi: 10.1007/s11665-017-2605-y
    [4] Lian Y, Huang J F, Zhang B Y, et al. Effect of annealing process on spheroidized microstructure and mechanical properties of H13 steel. Trans Mater Heat Treat, 2015, 36(3): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201503022.htm

    連勇, 黃進峰, 張寶燕, 等. 退火條件對H13鋼球化組織與力學性能的影響. 材料熱處理學報, 2015, 36(3): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201503022.htm
    [5] Xiang L Y, Chi H X, Ma D S, et al. Microstructure and properties of 4Cr13V corrosion resistant plastic mold steel with a large section. Iron Steel, 2015, 50(7): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201507016.htm

    相黎陽, 遲宏宵, 馬黨參, 等. 大截面4Cr13V耐蝕塑料模具鋼的組織和性能. 鋼鐵, 2015, 50(7): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201507016.htm
    [6] Wu X R. Comparative study of high polished and corrosion resistant plastic mould steel CT136 and imported advanced materials. Spec Steel Technol, 2017, 23(3): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-TGJS201703003.htm

    吳欣容. 高拋光性耐蝕塑料模具鋼CT136與進口先進材料對比研究. 特鋼技術, 2017, 23(3): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-TGJS201703003.htm
    [7] Zhong S R. Retained austenite and its X-ray measurement. Aerosp Mater Technol, 1983(4): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-YHCG198304010.htm

    鐘守仁. 殘余奧氏體及其X射線測量法. 宇航材料工藝, 1983(4): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-YHCG198304010.htm
    [8] Yu Q X, Zhang J Y. New development of modern new tool materials. Abrasives News, 2008(6): 13

    于啟勛, 張京英. 現代新型刀具材料新發展. 磨料磨具通訊, 2008(6): 13
    [9] Barlow L D, Du Toit M. Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420. J Mater Eng Perform, 2012, 21(7): 1327 doi: 10.1007/s11665-011-0043-9
    [10] Yu W T, Li J, Shi C B, et al. Effect of spheroidizing annealing on microstructure and mechanical properties of high-carbon martensitic stainless steel 8Cr13MoV. J Mater Eng Perform, 2017, 26(2): 478 doi: 10.1007/s11665-016-2461-1
    [11] Luzginova N, Zhao L, Sietsma J. Evolution and thermal stability of retained austenite in SAE 52100 bainitic steel. Mater Sci Eng A, 2007, 448(1-2): 104 doi: 10.1016/j.msea.2006.10.014
    [12] Lu S Y, Yao K F, Chen Y B, et al. Influence of heat treatment on the microstructure and corrosion resistance of 13 wt pct Cr-type martensitic stainless steel. Metall Mater Trans A, 2015, 46(12): 6090 doi: 10.1007/s11661-015-3180-1
    [13] Ma C, Luo H W. Precipitation and evolution behavior of carbide during heat treatments of GCr15 bearing steel. J Mater Eng, 2017, 45(6): 97 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201706016.htm

    馬超, 羅海文. GCr15軸承鋼熱處理過程中碳化物的析出與演變行為. 材料工程, 2017, 45(6): 97 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201706016.htm
    [14] Torres H, Varga M, Ripoll M R. High temperature hardness of steels and iron-based alloys. Mater Sci Eng A, 2016, 671: 170 doi: 10.1016/j.msea.2016.06.058
    [15] Bonagani S K, Bathula V, Kain V. Influence of tempering treatment on microstructure and pitting corrosion of 13wt. % Cr martensitic stainless steel. Corros Sci, 2018, 131: 340 doi: 10.1016/j.corsci.2017.12.012
    [16] Tang B, Jiang L, Hu R, et al. Correlation between grain boundary misorientation and M23C6 precipitation behaviors in a wrought Ni-based superalloy. Mater Charact, 2013, 78: 144 doi: 10.1016/j.matchar.2013.02.006
    [17] Lu S Y, Yao K F, Chen Y B, et al. Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel. J Appl Electrochem, 2015, 45(4): 375 doi: 10.1007/s10800-015-0796-1
    [18] Isfahany A N, Saghafian H, Borhani G. The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel. J Alloys Compd, 2011, 509(9): 3931 doi: 10.1016/j.jallcom.2010.12.174
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數:  1030
  • HTML全文瀏覽量:  459
  • PDF下載量:  32
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-07-28
  • 刊出日期:  2019-09-01

目錄

    /

    返回文章
    返回