Effect of spheroidized microstructure on quenching and tempering characteristics and corrosion resistance of AISI 420-type steel
-
摘要: 對比研究了兩種AISI 420型鋼球化組織的平均粒徑和圓整度,并對兩種鋼材進行了不同淬火和回火處理工藝.然后通過硬度測試、掃描電子顯微鏡(SEM)和X射線衍射儀(XRD)來比較球化組織對淬回火特性的影響,同時借助動電位極化曲線測試和質量分數3.5% NaCl溶液浸泡腐蝕來分析耐蝕性能的差異.結果表明:細小彌散的球化組織在淬火時可以提高AISI 420型鋼的C元素的固溶量,提高了其淬硬性,但是會提高殘留奧氏體的含量;尺寸更小的退火態碳化物可以使AISI 420型鋼的基體在奧氏體化過程中溶解更多的Cr元素,從而使得其在淬回火后基體Cr含量更高,減小貧Cr區產生幾率,最終顯示出更好的點蝕抗力;更少的大尺寸的未溶碳化物在腐蝕環境中降低了點蝕形核幾率,提高了AISI 420型鋼的耐蝕性能.所以在250℃回火時,AISI 420型鋼耐蝕性好且硬度高,在480℃回火后,耐蝕性最差.
-
關鍵詞:
- AISI 420型鋼 /
- 球化組織 /
- 淬回火特性 /
- Cr元素 /
- 耐蝕性能
Abstract: Owing to the increasing surface quality of plastic products, such as plastic medical supplies and resin lenses, the demands of plastic molds have increased. Corrosion and wear are the most important failure behaviors of plastic molds; therefore, best-quality plastic mold materials should feature high hardness and corrosion resistance. Super martensitic stainless steels show the optimum combination of strength, hardness, and wear and corrosion resistance after appropriate heat treatment. Therefore, they are the most mainstream materials in the field of high-grade die steel, especially AISI 420. Herein, AISI 420 steels with different average particle sizes and roundness of spheroidized microstructures were treated by different quenching and tempering procedures. Hardness test, scanning electron microscope, and X-ray powder diffraction were then used to research the impact of the spheroidized microstructure on the quenching and tempering characteristics. Additionally, the differences in corrosion resistance were investigated using a potentiodynamic polarization test and soaking corrosion in 3.5% NaCl solution. The results show that small and diffuse spheroidized microstructures increase the solution degree of the C element in AISI 420 steel during quenching, improving the hardening capacity, but increasing the amount of retained austenite simultaneously. Smaller-sized Cr-rich carbides enable the AISI 420 steel to dissolve more Cr element in the austenitizing procedure; therefore, the Cr content of the matrix is higher after quenching and tempering, which reduces the probability of the chromium-depleted area and shows better pitting resistance. Fewer large-sized, undissolved carbides reduce the probability of pitting nucleation in a corrosive environment and improve the corrosion resistance of AISI 420 steel. After tempering at 250℃, AISI 420 shows excellent corrosion resistance and higher hardness. While the steel exhibits the highest hardness, it also bring about the greatest damage to corrosion resistance when tempered at 480℃. -
圖 4 不同奧氏體化溫度淬火組織及能譜. (a) 420-C,1030 ℃; (b) 420-C,1070 ℃; (c) 420-S,1030 ℃; (d) 420-S,1070 ℃; (e) 420-C,1070 ℃未溶碳化物能譜
Figure 4. Quenched microstructure and energy spectrum of different austenitizing temperatures: (a) 420-C, 1030 ℃; (b) 420-C, 1070 ℃; (c) 420-S, 1030 ℃; (d) 420-S, 1070 ℃; (e) EDS of undissolved carbide for 420-C at 1070 ℃
表 1 試驗鋼的化學成分(質量分數)
Table 1. Chemical composition of tested steels ?
% 鋼種 C Si Mn Cr Mo Ni V S P Fe 420-C 0.39 0.99 0.57 13.39 0.12 0.25 0.30 0.0040 0.022 余量 420-S 0.35 0.90 0.49 13.36 0.13 0.21 0.30 0.0046 0.028 余量 表 2 淬火態試樣殘留奧氏體體積分數測定結果
Table 2. Retained austenite content of samples after quenching ?
% 鋼種 1010 ℃ 1030 ℃ 1050 ℃ 1070 ℃ 1090 ℃ 420-S 4.6 5.9 7.5 9.6 11.3 420-C 5.3 13.7 22.8 20.2 21.3 表 3 動電位掃描結果
Table 3. Dynamic potential scan results
鋼種 熱處理工藝 Ecorr/V (vs SCE) Epit/V (vs SCE) 1030 ℃淬火+250 ℃回火 -0.188 0.02 420-S 1030 ℃淬火+460 ℃回火 -0.313 ― 1030 ℃淬火+650 ℃回火 -0.203 -0.06 1030 ℃淬火+250 ℃回火 -0.170 -0.07 420-C 1030 ℃淬火+460 ℃回火 -0.319 ― 1030 ℃淬火+650 ℃回火 -0.187 -0.05 www.77susu.com -
參考文獻
[1] Dalmau A, Richard C, Igual-Mu?oz A. Degradation mechanisms in martensitic stainless steels: wear, corrosion and tribocorrosion appraisal. Tribol Int, 2018, 121: 167 doi: 10.1016/j.triboint.2018.01.036 [2] Geng H M, Wu X C, Wang H B, et al. Effects of copper content on the machinability and corrosion resistance of martensitic stainless steel. J Mater Sci, 2008, 43(1): 83 doi: 10.1007/s10853-007-2084-x [3] Abbasi-Khazaei B, Mollaahmadi A. Rapid tempering of martensitic stainless steel AISI420: microstructure, mechanical and corrosion properties. J Mater Eng Perform, 2017, 26(4): 1626 doi: 10.1007/s11665-017-2605-y [4] Lian Y, Huang J F, Zhang B Y, et al. Effect of annealing process on spheroidized microstructure and mechanical properties of H13 steel. Trans Mater Heat Treat, 2015, 36(3): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201503022.htm連勇, 黃進峰, 張寶燕, 等. 退火條件對H13鋼球化組織與力學性能的影響. 材料熱處理學報, 2015, 36(3): 118 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201503022.htm [5] Xiang L Y, Chi H X, Ma D S, et al. Microstructure and properties of 4Cr13V corrosion resistant plastic mold steel with a large section. Iron Steel, 2015, 50(7): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201507016.htm相黎陽, 遲宏宵, 馬黨參, 等. 大截面4Cr13V耐蝕塑料模具鋼的組織和性能. 鋼鐵, 2015, 50(7): 92 https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201507016.htm [6] Wu X R. Comparative study of high polished and corrosion resistant plastic mould steel CT136 and imported advanced materials. Spec Steel Technol, 2017, 23(3): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-TGJS201703003.htm吳欣容. 高拋光性耐蝕塑料模具鋼CT136與進口先進材料對比研究. 特鋼技術, 2017, 23(3): 8 https://www.cnki.com.cn/Article/CJFDTOTAL-TGJS201703003.htm [7] Zhong S R. Retained austenite and its X-ray measurement. Aerosp Mater Technol, 1983(4): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-YHCG198304010.htm鐘守仁. 殘余奧氏體及其X射線測量法. 宇航材料工藝, 1983(4): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-YHCG198304010.htm [8] Yu Q X, Zhang J Y. New development of modern new tool materials. Abrasives News, 2008(6): 13于啟勛, 張京英. 現代新型刀具材料新發展. 磨料磨具通訊, 2008(6): 13 [9] Barlow L D, Du Toit M. Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420. J Mater Eng Perform, 2012, 21(7): 1327 doi: 10.1007/s11665-011-0043-9 [10] Yu W T, Li J, Shi C B, et al. Effect of spheroidizing annealing on microstructure and mechanical properties of high-carbon martensitic stainless steel 8Cr13MoV. J Mater Eng Perform, 2017, 26(2): 478 doi: 10.1007/s11665-016-2461-1 [11] Luzginova N, Zhao L, Sietsma J. Evolution and thermal stability of retained austenite in SAE 52100 bainitic steel. Mater Sci Eng A, 2007, 448(1-2): 104 doi: 10.1016/j.msea.2006.10.014 [12] Lu S Y, Yao K F, Chen Y B, et al. Influence of heat treatment on the microstructure and corrosion resistance of 13 wt pct Cr-type martensitic stainless steel. Metall Mater Trans A, 2015, 46(12): 6090 doi: 10.1007/s11661-015-3180-1 [13] Ma C, Luo H W. Precipitation and evolution behavior of carbide during heat treatments of GCr15 bearing steel. J Mater Eng, 2017, 45(6): 97 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201706016.htm馬超, 羅海文. GCr15軸承鋼熱處理過程中碳化物的析出與演變行為. 材料工程, 2017, 45(6): 97 https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201706016.htm [14] Torres H, Varga M, Ripoll M R. High temperature hardness of steels and iron-based alloys. Mater Sci Eng A, 2016, 671: 170 doi: 10.1016/j.msea.2016.06.058 [15] Bonagani S K, Bathula V, Kain V. Influence of tempering treatment on microstructure and pitting corrosion of 13wt. % Cr martensitic stainless steel. Corros Sci, 2018, 131: 340 doi: 10.1016/j.corsci.2017.12.012 [16] Tang B, Jiang L, Hu R, et al. Correlation between grain boundary misorientation and M23C6 precipitation behaviors in a wrought Ni-based superalloy. Mater Charact, 2013, 78: 144 doi: 10.1016/j.matchar.2013.02.006 [17] Lu S Y, Yao K F, Chen Y B, et al. Effects of austenitizing temperature on the microstructure and electrochemical behavior of a martensitic stainless steel. J Appl Electrochem, 2015, 45(4): 375 doi: 10.1007/s10800-015-0796-1 [18] Isfahany A N, Saghafian H, Borhani G. The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel. J Alloys Compd, 2011, 509(9): 3931 doi: 10.1016/j.jallcom.2010.12.174 -