-
摘要: 為解決堆浸過程中由于大量礦粉存在而導致礦堆滲透性差、浸出率低等問題,以次生硫化銅礦為原料,開展了制粒試驗研究.考察了不同制粒黏結劑對礦粉的黏結效果,確定了最佳的制粒黏結劑、制粒工藝以及制粒方法.通過正交制粒試驗,明確了影響制粒試驗的主要因素.試驗結果表明:不同制粒黏結劑的黏結效果排序依次為:SFS-2 > SFS-3 >水泥>半水石膏> SFS-1 > SFS-0 >硅酸鈉>陽離子型聚丙烯酰胺.當選用黏結劑SFS-2,黏結劑占礦粉質量分數為8%、加酸量為25 kg·t-1以及制粒過程噴水質量分數為30%時,所制礦團效果最佳.其濕強度達到94.62%,抗壓強度達到417.44 N,礦團酸浸維持完好時間超過25 d,礦團形態基本維持不變,無明顯破裂現象.正交制粒試驗得到多因素對次生硫化銅礦制粒的影響由大到小依次為:黏結劑占礦石質量分數、加酸量和制粒噴水量.對選定的黏結劑進行細菌接種試驗顯示,黏結劑對細菌群落無明顯影響.添加黏結劑試驗組細菌數量為8.79×107 mL-1,未添加黏結劑試驗組細菌數量為8.86×107 mL-1.對制粒后礦團進行浸礦試驗結果顯示,礦粉制粒后銅浸出率提高了12.74%,制粒通過增大礦物之間的孔隙,增加浸出液與礦石的接觸,進而提高銅浸出率.Abstract: The presence of a large amount of fine particles and muddy ore during the heap leaching process leads the occurrence of low leaching rate. Herein, agglomeration experiments using low-grade secondary copper sulfide ore were conducted to enhance the poor heap permeability and low leaching rate caused by the presence of a large amount of fine particles during the heap leaching process. The optimum binder, agglomeration technology, and agglomeration method were selected after investigating the bonding effects of different binders on mineral particles. The effect of single factor, including the binder mass fraction, acid quality, and bulk of water spraying on agglomeration experiments were conducted before the orthogonal experiment. The key factors that have a considerable effect on agglomeration were identified through the orthogonal experiment. According to the experimental results, the order of bonding effect of different granulation binders is as follows: SFS-2 > SFS-3 > cement > hemihydrate gypsum > SFS-1 > SFS-0 > sodium silicate > cationic polyacrylamide. The effect of agglomeration is the best when SFS-2 is selected as a binder, the acid quality is measured as 25 kg·t-1, and the mass fraction of spraying water is 30% during the agglomeration process. The wet strength and compressive strength reaches up to 94.62% and 417.44 N, respectively, after drying. The acid leaching time of agglomerations is maintained for more than 25 d, during which the shape of agglomerations remains unchanged and is without obvious fracture. According to the orthogonal experiment, the factors affecting the agglomeration in the descending order are as follows: binder mass fraction, acid quality, and bulk of water spraying. The bacterial inoculation experiment in the presence of binder was conducted, but it shows no considerable effect of binder on the bacterial community. The bacterial number of experiment in the presence of binder reaches 8.79×107 mL-1, while that in the absence of binder is 8.86×107 mL-1. The leaching experiments results show that the copper leaching rate increases by 12.74% after agglomeration because agglomeration increases the porosity between the minerals and improves the contact between leaching solution and minerals.
-
Key words:
- binder /
- wet strength /
- compressive strength /
- secondary copper sulfide ore /
- bioleaching
-
表 1 礦樣主要元素質量分數
Table 1. Mass fraction of major elements in mineral samples ?
% Cu Fe S CaO MgO Al2O3 SiO2 0.70 1.67 1.10 0.30 0.04 5.29 91.00 表 2 銅物相分析結果(質量分數)
Table 2. Cu phase analysis results of mineral samples ?
% 氧化銅 原生硫化銅 次生硫化銅 結合銅 總Cu 0.04 0.05 0.60 0.01 0.70 表 3 不同黏結劑礦團完全破裂所需時間
Table 3. Break time of aggregation with different binders ?
d SFS-0 SFS-1 SFS-2 SFS-3 水泥 硅酸鈉 半水石膏 陽離子型聚丙烯酰胺 < 8 < 10 >20 >20 < 16 < 3 < 2 < 3 表 4 3因素4水平制粒正交試驗
Table 4. Three factors of four horizontal orthogonal test
水平 因素 黏結劑質量分數/% 加酸量/(kg·t-1) 噴水量/% 1 2 20 20 2 4 25 25 3 6 30 30 4 8 35 35 表 5 正交制粒試驗方案與結果
Table 5. Orthogonal experiment schemes and results
組別 黏結劑質量分數/% 加酸量/(kg·t-1) 噴水量/% 濕強度/% 抗壓強度/N 酸浸維持完整形態時間/d 1 2(1) 20(1) 20(1) 90.41 102.53 < 11 2 2(1) 25(2) 25(2) 91.08 105.96 < 13 3 2(1) 30(3) 30(3) 90.24 98.92 < 12 4 2(1) 35(4) 35(4) 89.96 100.81 < 8 5 4(2) 20(1) 25(2) 91.02 121.07 < 9 6 4(2) 25(2) 20(1) 90.83 123.81 < 14 7 4(2) 30(3) 35(4) 92.78 114.77 < 12 8 4(2) 35(4) 30(3) 90.44 111.84 < 10 9 6(3) 20(1) 30(3) 92.78 182.87 < 16 10 6(3) 25(2) 35(4) 90.99 195.37 < 18 11 6(3) 30(3) 20(1) 91.92 188.48 < 14 12 6(3) 35(4) 25(2) 93.29 201.29 < 13 13 8(4) 20(1) 35(4) 92.33 382.61 < 18 14 8(4) 25(2) 30(3) 94.62 417.44 >25 15 8(4) 30(3) 25(2) 91.09 402.69 < 23 16 8(4) 35(4) 20(1) 90.98 392.83 < 14 ??注:括號中數字代表水平. 表 6 礦團酸浸時間極差分析
Table 6. Analysis of the acid leaching time
Kij 黏結劑質量分數/% 加酸量/(kg·t-1) 噴水量/% j=1 j=2 j=3 K1j 44 64 53 K2j 45 70 58 K3j 61 61 63 K4j 90 45 66 K1j 11.00 16.00 13.25 K2j 11.25 17.50 14.50 K3j 15.25 15.25 15.75 K4j 22.50 11.25 16.50 Rj 11.50 6.25 3.25 表 7 浸礦試驗方案
Table 7. Leaching experiment schemes
組別 礦石量/g 礦團量/g 礦粉量/g A 200 200 0 B 200 0 200 www.77susu.com -
參考文獻
[1] Quaicoe I, Nosrati A, Skinner W, et al. Agglomeration and column leaching behaviour of goethitic and saprolitic nickel laterite ores. Miner Eng, 2014, 65: 1 doi: 10.1016/j.mineng.2014.04.001 [2] Hoummady E, Golfier F, Cathelineau M, et al. A multi-analytical approach to the study of uranium-ore agglomerate structure and porosity during heap leaching. Hydrometallurgy, 2017, 171: 33 doi: 10.1016/j.hydromet.2017.04.011 [3] Hoummady E, Golfier F, Cathelineau M, et al. A study of uranium-ore agglomeration parameters and their implications during heap leaching. Miner Eng, 2018, 127: 22 doi: 10.1016/j.mineng.2018.07.012 [4] Yang C R, Qin W Q, Lai S S, et al. Bioleaching of a low grade nickel-copper-cobalt sulfide ore. Hydrometallurgy, 2011, 106(1-2): 32 doi: 10.1016/j.hydromet.2010.11.013 [5] Ahmadi A, Khezri M, Abdollahzadeh A A, et al. Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran. Hydrometallurgy, 2015, 154: 1 doi: 10.1016/j.hydromet.2015.03.006 [6] Hu B, Yi Y, Liang C, et al. Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators. Powder Technol, 2018, 335: 186 doi: 10.1016/j.powtec.2018.04.016 [7] Wollborn T, Schwed M F, Fritsching U. Direct tensile tests on particulate agglomerates for the determination of tensile strength and interparticle bond forces. Adv Powder Technol, 2017, 28(9): 2177 doi: 10.1016/j.apt.2017.05.024 [8] Vo T T, Mutabaruka P, Nezamabadi S, et al. Mechanical strength of wet particle agglomerates. Mech Res Commun, 2018, 92: 1 doi: 10.1016/j.mechrescom.2018.07.003 [9] Luo Y, Wen J K, Wu B, et al. Acid agglomeration and mechanism analysis of a low-grade oxide-sulfide mixed copper ore. Chin J Eng, 2017, 39(9): 1321 doi: 10.13374/j.issn2095-9389.2017.09.004羅毅, 溫建康, 武彪, 等. 低品位氧硫混合銅礦的酸性制粒及機理. 工程科學學報, 2017, 39(9): 1321 doi: 10.13374/j.issn2095-9389.2017.09.004 [10] Zhang Y B, Zhou Y L, Jiang T, et al. Applications of MHA binder in oxidized pellets preparation from vanadium, titanium-bearing magnetite concentrates. J Cent South Univ Sci Technol, 2012, 43(7): 2459 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207000.htm張元波, 周友連, 姜濤, 等. MHA黏結劑在釩鈦磁鐵礦氧化球團制備中的應用. 中南大學學報: 自然科學版, 2012, 43(7): 2459 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207000.htm [11] Xie X L, Duan T, Zheng F Q, et al. Study of magnetite oxidized pellet prepared by modified composite binder. Met Mine, 2018(1): 79 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201801016.htm謝小林, 段婷, 鄭富強, 等. 改性復合黏結劑制備磁鐵礦氧化球團研究. 金屬礦山, 2018(1): 79 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201801016.htm [12] Li C X, Wang F F, Bai Y, et al. Experimental study on preparation of pellet binder by purified Ca-bentonite. Bull Chin Ceram Soc, 2018, 37(2): 672 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201802048.htm李彩霞, 王飛飛, 白陽, 等. 鈣基膨潤土提純制備球團黏結劑試驗. 硅酸鹽通報, 2018, 37(2): 672 https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201802048.htm [13] Jia J H, Han H L, Duan D P, et al. Effect of different binder addition on strength of carbon-containing pelletized blast furnace dusts. Iron steel Van Tit, 2013, 34(6): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201306007.htm賈繼華, 韓宏亮, 段東平, 等. 黏結劑對高爐灰含碳球團強度的影響. 鋼鐵釩鈦, 2013, 34(6): 29 https://www.cnki.com.cn/Article/CJFDTOTAL-GTFT201306007.htm [14] Yin Z X, Li X C, Bai Y, et al. Study on production of pellet by compound binder prepared with purified bentonite. Met Mine, 2018(4): 126 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804023.htm殷志祥, 李秀晨, 白陽, 等. 提純膨潤土制備復合黏結劑用于生產球團試驗. 金屬礦山, 2018(4): 126 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804023.htm [15] Wu X, Peng X M, Chen Y H. New high efficient adhesive iron concentrate oxidized pellets experiment. Mod Min, 2016(9): 78 doi: 10.3969/j.issn.1674-6082.2016.09.022吳霞, 彭小敏, 陳玉花. 新型高效黏結劑鐵精礦氧化球團試驗. 現代礦業, 2016(9): 78 doi: 10.3969/j.issn.1674-6082.2016.09.022 [16] Li X H, Li C Y, Wang H. Acidified granulation pretreatment-heap leaching processing of argillious oxidized copper ore from Xintai Co. Ltd. Nonferrous Met, 2009, 61(1): 86 https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200901021.htm黎湘虹, 黎澄宇, 王卉. 鑫泰含泥氧化銅礦制粒預處理堆浸工藝. 有色金屬, 2009, 61(1): 86 https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200901021.htm [17] Liang J L, Liu H J, Wang Q L, et al. Experimental study on acid agglomeration heap-leaching of an oxidized copper ore on surface. Min Res Dev, 2012, 32(5): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201205012.htm梁建龍, 劉惠娟, 王清良, 等. 地表氧化銅礦酸法制粒堆浸試驗研究. 礦業研究與開發, 2012, 32(5): 37 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201205012.htm [18] Tan H M. A study on granulated heap leaching of lowly graded and highly-mudded oxidized copper ore. J Shaoyang Univ Nat Sci, 2005, 2(1): 92 doi: 10.3969/j.issn.1672-7010.2005.01.034譚海明. 低品位高含泥氧化銅礦的制粒堆浸新工藝研究. 邵陽學院學報: 自然科學版, 2005, 2(1): 92 doi: 10.3969/j.issn.1672-7010.2005.01.034 [19] Lü P. A study on granulated heap leaching of low graded and highly-mudded oxidized copper ore. Min Res Dev, 2001, 21(2): 32 doi: 10.3969/j.issn.1005-2763.2001.02.011呂萍. 低品位高含泥氧化銅礦制粒堆浸新工藝的研究. 礦業研究與開發, 2001, 21(2): 32 doi: 10.3969/j.issn.1005-2763.2001.02.011 [20] Quaicoe I, Nosrati A, Addai-Mensah J. Influence of binder composition on hematite-rich mixed minerals agglomeration behaviour and product properties. Chem Eng Res Des, 2015, 97: 45 doi: 10.1016/j.cherd.2015.02.021 [21] Yin S H, Wang L M, Xie F F, et al. Effect of heap structure on column leaching of secondary copper sulfide. Chin J Nonferrous Met, 2017, 27(11): 2340 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201711020.htm尹升華, 王雷鳴, 謝芳芳, 等. 堆體結構對次生硫化銅礦柱浸的影響. 中國有色金屬學報, 2017, 27(11): 2340 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201711020.htm -