<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Fe?Mn?Al?C系中錳鋼的研究現狀與發展前景

宋仁伯 霍巍豐 周乃鵬 李佳佳 張哲睿 王永金

宋仁伯, 霍巍豐, 周乃鵬, 李佳佳, 張哲睿, 王永金. Fe?Mn?Al?C系中錳鋼的研究現狀與發展前景[J]. 工程科學學報, 2020, 42(7): 814-828. doi: 10.13374/j.issn2095-9389.2019.08.27.002
引用本文: 宋仁伯, 霍巍豐, 周乃鵬, 李佳佳, 張哲睿, 王永金. Fe?Mn?Al?C系中錳鋼的研究現狀與發展前景[J]. 工程科學學報, 2020, 42(7): 814-828. doi: 10.13374/j.issn2095-9389.2019.08.27.002
SONG Ren-bo, HUO Wei-feng, ZHOU Nai-peng, LI Jia-jia, ZHANG Zhe-rui, WANG Yong-jin. Research progress and prospect of Fe?Mn?Al?C medium Mn steels[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828. doi: 10.13374/j.issn2095-9389.2019.08.27.002
Citation: SONG Ren-bo, HUO Wei-feng, ZHOU Nai-peng, LI Jia-jia, ZHANG Zhe-rui, WANG Yong-jin. Research progress and prospect of Fe?Mn?Al?C medium Mn steels[J]. Chinese Journal of Engineering, 2020, 42(7): 814-828. doi: 10.13374/j.issn2095-9389.2019.08.27.002

Fe?Mn?Al?C系中錳鋼的研究現狀與發展前景

doi: 10.13374/j.issn2095-9389.2019.08.27.002
基金項目: 中國博士后科學基金資助項目(2019M650482);教育部中央高校基金資助項目(FRF-TP-18-039A1,FRF-IDRY-19-013)
詳細信息
    通訊作者:

    E-mail: songrb@mater.ustb.edu.cn

  • 中圖分類號: TG142.71

Research progress and prospect of Fe?Mn?Al?C medium Mn steels

More Information
  • 摘要: 隨著汽車保有量的提高,能源消耗和環境問題對汽車用鋼提出了輕量化的要求。目前正在發展的第三代汽車用鋼的研究思路是將加入輕量元素以“輕”和增強增塑以“薄”相結合。Fe?Mn?Al?C系中錳鋼作為第三代汽車用鋼的主要組成部分,是當今的研究熱點之一。本文總結了近些年國內外Fe?Mn?Al?C系中錳鋼的研究文獻,從生產成本、力學性能等方面介紹了Fe?Mn?Al?C系中錳鋼的優勢。從成分設計、工藝設計、組織特征、變形及斷裂機制等多個方面出發,對文獻進行分析,總結出了合金成分、工藝路線和組織特征對性能的影響規律。闡述了奧氏體層錯能及其穩定性對中錳鋼變形機制,尤其是相變誘導塑性(TRIP效應)的影響規律。最后對目前Fe?Mn?Al?C系中錳鋼研究過程中存在的爭議問題進行了總結,展望了未來的發展趨勢,以期為中錳鋼的后續研究和實際生產提供參考。

     

  • 圖  1  Fe–11Mn–xAl–0.2C中錳鋼力學性能隨Al含量的變化

    Figure  1.  Mechanical properties of Fe–11Mn–xAl–0.2C steel with changes of Al content

    圖  2  Fe–Mn–Al–C系中錳鋼強塑積與Mn/Al的關系

    Figure  2.  PSE vs Mn/Al of Fe–Mn–Al–C medium Mn steels

    圖  3  Fe–Mn–Al–C系中錳鋼兩種典型熱處理工藝。(a)臨界退火工藝圖[21,36,40];(b)淬火+回火工藝圖[20,47]

    Figure  3.  Typical heating treatments processes of Fe–Mn–Al–C medium Mn steels: (a) IA[21,36,40]; (b) Q&T[20,47](A—austenite, F—ferrite, M—martensite, θ—cementite)

    圖  4  Fe–Mn–Al–C系中錳鋼力學性能與工藝的關系。(a)中錳鋼在不同工藝下的強塑積和延伸率分布;(b)Fe–8Mn–3Al–0.5C兩種工藝樣品的工程應力應變曲線[47]

    UTS—ultimate tensile strength;YS—yield strength;TE—total elongation;YR—yield ratio;PSE—product of strength and elongation

    Figure  4.  Relations between mechanical properties and processes of Fe–Mn–Al–C medium Mn steels: (a) PSE and TE distribution of Fe–Mn–Al–C medium Mn steels in different processes; (b) engineering stress–strain curves of two different processes in Fe–8Mn–3Al–0.5C[47]

    圖  5  Fe–Mn–Al–C系中錳鋼屈強比與屈服強度的關系

    Figure  5.  YR vs YS of Fe–Mn–Al–C medium Mn steels

    圖  6  幾種典型的Fe–Mn–Al–C系中錳鋼組織。(a)Fe–6Mn–2Al–0.4C在750 ℃臨界退火20 min的SEM組織[5];(b)Fe–8Mn–6Al–0.2C在1000 ℃固溶處理2 h的SEM組織[41];(c)Fe–10Mn–10Al–0.7C 在850 ℃退火1 h的SEM組織[9]

    Figure  6.  Typical microstructures of Fe–Mn–Al–C medium Mn steels: (a) SEM microstructure of Fe–6Mn–2Al–0.4C annealed at 750 ℃ for 20 min[5]; (b) SEM microstructure of Fe–8Mn–6Al–0.2C after solution treatment at 1000 ℃ for 2 h[41]; (c) SEM microstructure of Fe–10Mn–10Al–0.7C annealed at 850 ℃ for 1 h[9]

    圖  7  1000 ℃固溶處理1 h后SEM組織中帶狀δ-鐵素體晶粒的破碎和離散模型[8]

    RD—rolling direction;ND—normal direction

    Figure  7.  Stuck and separation model for banded-structure δ-ferrite grains in SEM micrograph after solution treatment at 1000 ℃ for 1 h[8]

    圖  8  Al和Mn含量對κ相溶線的影響:(a)Fe–30Mn–xAl–1C;(b)Fe–xMn–7Al–1C[72,76]

    Figure  8.  Effects of Al and Mn contents on the solvus of κ phase in (a) Fe–30Mn–xAl–1C and (b) Fe–xMn–7Al–1C[72,76]

    圖  9  Mn的質量分數為10%時通過實驗(數據點[77-78])以及基于FactSage 6.4(實線[72])和CALPHAD(虛線[79])計算得到的Fe–Mn–Al–C合金900 ℃熱力學相圖

    Figure  9.  Isothermal phase sections of Fe–Mn–Al–C alloys at 900 ℃ established by experiments (indicidual points[77-78]), calculated from FactSage 6.4 (solid lines[72]) and from CALPHAD approach (dotted lines[79]) when Mn content is 10%

    圖  10  用3D呈現的Fe–Mn–Al–C鋼在室溫下基于成分的SFE圖

    Figure  10.  Composition-dependent SFE map of Fe–Mn–Al–C steels at room temperatures presented in 3D

    圖  11  Fe–6Mn–2Al–0.4C在不同退火溫度下的加工硬化速率曲線[5]

    Figure  11.  Working hardening rate curves at various annealing temperatures in Fe–6Mn–2Al–0.4C [5]

    圖  12  Fe–Mn–Al–C系中錳鋼的斷裂機制。(a)Fe–8Mn–6Al–0.2C拉伸變形后的SEM斷口形貌[41];(b)Fe–8Mn–8Al–0.8C拉伸變形中復合斷裂示意圖[39]

    RD—rolling direction;TD—transverse direction;FG—fine-grained region

    Figure  12.  Fracture mechanism of Fe–Mn–Al–C medium Mn steels: (a) SEM fractograph after tensile deformation in Fe–8Mn–6Al–0.2C[41]; (b) schematic illustration showing the formation of mixed fracture during tensile deformation for Fe–8Mn–8Al–0.8C[39]

    圖  13  臨界退火后的Fe–6Mn–3Al–0.3C–1.5Si鋼在拉伸變形時的破壞形成模型[94]。(a)在UFG區的孔洞萌生模型;(b)類解理裂紋的形成模型

    RD—rolling direction;ND—normal direction

    Figure  13.  Model for damage formation during the tensile deformation of intercritically annealed Fe–6Mn–3Al–0.3C–1.5Si steel[94]: (a) model for void initiation in the UFG constituent; (b) model for cleavage-like crack creation

    表  1  不同組織類型Fe–Mn–Al–C中錳鋼的化學成分和力學性能[53]

    Table  1.   Chemical compositions and tensile properties of various Fe–Mn–Al–C medium Mn steels by their microstructure[53]

    MicrostructureMain chemical compositionMechanical propertiesReferences
    Yield strength/
    MPa
    Tensile strength/
    MPa
    Total elongation/
    %
    α-ferrite (+ κ-carbide)Fe–3.5Mn–5.8Al–0.3C53272223.2[5460]
    α-ferrite + austenite (+κ-carbide)Fe–9Mn–5Al–0.3C50273477[6168]
    α-ferrite + δ-ferrite + austenite +
    martensite(+κ-carbide)
    Fe–8.1Mn–5.3Al–0.23C56194954[2021,39,
    41,6971]
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Tang D, Mi Z L, Chen Y L. Technology and research and development of advanced automobile steel abroad. Iron Steel, 2005, 40(6): 1 doi: 10.3321/j.issn:0449-749X.2005.06.001

    唐荻, 米振莉, 陳雨來. 國外新型汽車用鋼的技術要求及研究開發現狀. 鋼鐵, 2005, 40(6):1 doi: 10.3321/j.issn:0449-749X.2005.06.001
    [2] Kang Y L. Lightweight vehicle, advanced high strength steel and energy-saving and emission reduction. Iron Steel, 2008, 43(6): 1 doi: 10.3321/j.issn:0449-749X.2008.06.001

    康永林. 汽車輕量化先進高強鋼與節能減排. 鋼鐵, 2008, 43(6):1 doi: 10.3321/j.issn:0449-749X.2008.06.001
    [3] Luo Z X, Rong J, Yang K, et al. Development of high strength automotive steel and research on 3rd generation automotive high strength steel. Automobile Technol Mater, 2015(4): 1 doi: 10.3969/j.issn.1003-8817.2015.04.001

    羅振軒, 榮建, 楊可, 等. 高強度汽車用鋼發展與第3代汽車高強度鋼的研究. 汽車工藝與材料, 2015(4):1 doi: 10.3969/j.issn.1003-8817.2015.04.001
    [4] Lee Y K, Han J. Current opinion in medium manganese steel. Mater Sci Technol, 2015, 31(7): 843 doi: 10.1179/1743284714Y.0000000722
    [5] Li J J, Song R B, Li X, et al. Microstructural evolution and tensile properties of 70 GPa·% grade strong and ductile hot-rolled 6Mn steel treated by intercritical annealing. Mater Sci Eng A, 2019, 745: 212 doi: 10.1016/j.msea.2018.12.110
    [6] Jo M C, Lee H, Zargaran A, et al. Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel. Mater Sci Eng A, 2018, 737: 69 doi: 10.1016/j.msea.2018.09.024
    [7] Yang F Q, Song R B, Li Y P, et al. Tensile deformation of low density duplex Fe–Mn–Al–C steel. Mater Des, 2015, 76: 32 doi: 10.1016/j.matdes.2015.03.043
    [8] Zhang L F, Song R B, Zhao C, et al. Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe–Mn–Al–C steel. Mater Sci Eng A, 2015, 640: 225 doi: 10.1016/j.msea.2015.05.108
    [9] Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe–10Mn–10Al–0.7C low-density steel. Mater Des, 2016, 91: 348 doi: 10.1016/j.matdes.2015.11.115
    [10] Li Z C, Ding H, Misra R D K, et al. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments. Mater Sci Eng A, 2017, 682: 211 doi: 10.1016/j.msea.2016.11.048
    [11] Xu J P, Fu H, Wang Z, et al. Research progress and prospect of medium manganese steel. Chin J Eng, 2019, 41(5): 557

    徐娟萍, 付豪, 王正, 等. 中錳鋼的研究進展與前景. 工程科學學報, 2019, 41(5):557
    [12] Da Silva A K, Leyson G, Kuzmina M, et al. Confined chemical and structural states at dislocations in Fe-9wt% Mn steels: a correlative TEM-atom probe study combined with multiscale modelling. Acta Mater, 2017, 124: 305 doi: 10.1016/j.actamat.2016.11.013
    [13] Han J, Da Silva A K, Ponge D, et al. The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater, 2017, 122: 199 doi: 10.1016/j.actamat.2016.09.048
    [14] Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: confined chemical and structural states at dislocations. Science, 2015, 349(6252): 1080 doi: 10.1126/science.aab2633
    [15] Frommeyer G, Drewes E J, Engl B. Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev Met Paris, 2000, 97(10): 1245 doi: 10.1051/metal:2000110
    [16] Chu C M, Huang H, Kao P W, et al. Effect of alloying chemistry on the lattice constant of austenitic Fe–MnAl–C alloys. Scripta Metall Mater, 1994, 30(4): 505 doi: 10.1016/0956-716X(94)90611-4
    [17] Lehnhoff G R, Findley K O, De Cooman B C. The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scripta Mater, 2014, 92: 19 doi: 10.1016/j.scriptamat.2014.07.019
    [18] Frommeyer G, Brux U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int, 2013, 43(3): 438
    [19] Zhang F C, Fu R D, Qiu L, et al. Microstructure and property of nitrogen-alloyed high manganese austenitic steel under high strain rate tension. Mater Sci Eng A, 2008, 492(1-2): 255 doi: 10.1016/j.msea.2008.03.026
    [20] Cai Z H, Cai B, Ding H, et al. Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content. Mater Sci Eng A, 2016, 676: 263 doi: 10.1016/j.msea.2016.08.119
    [21] Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum. Scripta Mater, 2013, 68(6): 365 doi: 10.1016/j.scriptamat.2012.09.030
    [22] Cai M H, Zhu W J, Stanford N, et al. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy. Mater Sci Eng A, 2016, 653: 35 doi: 10.1016/j.msea.2015.11.103
    [23] Cai Z H, Ding H, Xue X, et al. Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength-high ductility combination transformation-induced plasticity steel. Scripta Mater, 2013, 68(11): 865 doi: 10.1016/j.scriptamat.2013.02.010
    [24] Cai Z H, Ding H, Xue X, et al. Microstructural evolution and mechanical properties of hot-rolled 11% manganese TRIP steel. Mater Sci Eng A, 2013, 560: 388 doi: 10.1016/j.msea.2012.09.083
    [25] Lee C Y, Jeong J, Han J, et al. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Mater, 2015, 84: 1 doi: 10.1016/j.actamat.2014.10.032
    [26] Cai Z H, Ding H, Kamoutsi H, et al. Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel. Mater Sci Eng A, 2016, 654: 359 doi: 10.1016/j.msea.2015.12.057
    [27] Lee S, De Connman B C. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel. Steel Res Int, 2015, 86(10): 1170 doi: 10.1002/srin.201500038
    [28] Li Z C, Ding H, Cai Z H. Mechanical properties and austenite stability in hot-rolled 0.2C–1.6/3.2Al–6Mn–Fe TRIP steel. Mater Sci Eng A, 2015, 639: 559 doi: 10.1016/j.msea.2015.05.061
    [29] Li Z C, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater Sci Eng A, 2017, 679: 230 doi: 10.1016/j.msea.2016.10.042
    [30] Zhao X M, Shen Y F, Qiu L N, et al. Effects of intercritical annealing temperature on mechanical properties of Fe–7.9Mn–0.14Si–0.05Al–0.07C steel. Materials, 2014, 7(12): 7891 doi: 10.3390/ma7127891
    [31] Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater, 2015, 84: 229 doi: 10.1016/j.actamat.2014.10.052
    [32] Cai M H, Li Z, Chao Q, et al. A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility. Metall Mater Trans A, 2014, 45(12): 5624 doi: 10.1007/s11661-014-2504-x
    [33] Xu Y B, Hu Z P, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite. Mater Sci Eng A, 2017, 688: 40 doi: 10.1016/j.msea.2017.01.063
    [34] Sun B H, Vanderesse N, Fazeli F, et al. Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel. Scripta Mater, 2017, 133: 9 doi: 10.1016/j.scriptamat.2017.01.022
    [35] Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum. Mater Sci Eng A, 2017, 682: 45 doi: 10.1016/j.msea.2016.11.036
    [36] Lee S, Lee K, De Cooman B C. Observation of the TWIP +TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel. Metall Mater Trans A, 2015, 46(6): 2356 doi: 10.1007/s11661-015-2854-z
    [37] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science, 2017, 357(6355): 1029 doi: 10.1126/science.aan0177
    [38] Wang M M, Tasan C C, Ponge D, et al. Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater, 2015, 85: 216 doi: 10.1016/j.actamat.2014.11.010
    [39] Zhou N P, Song R B, Li X, et al. Dependence of austenite stability and deformation behavior on tempering time in an ultrahigh strength medium Mn TRIP steel. Mater Sci Eng A, 2018, 738: 153 doi: 10.1016/j.msea.2018.09.098
    [40] Li X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing. Scripta Mater, 2018, 154: 30 doi: 10.1016/j.scriptamat.2018.05.016
    [41] Li X, Song R B, Zhou N P, et al. Microstructure and tensile behavior of Fe–8Mn–6Al–0.2C low density steel. Mater Sci Eng A, 2018, 709: 97 doi: 10.1016/j.msea.2017.10.039
    [42] Chin K G, Kang C Y, Shin S Y, et al. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. Mater Sci Eng A, 2011, 528(6): 2922 doi: 10.1016/j.msea.2010.12.085
    [43] Hong S, Shin S Y, Kim H S, et al. Effects of aluminum addition on tensile and cup forming properties of three twinning induced plasticity steels. Metall Mater Trans A, 2012, 43(6): 1870 doi: 10.1007/s11661-011-1007-2
    [44] Dieudonné T, Marchetti L, Wery M, et al. Role of copper and aluminum on the corrosion behavior of austenitic Fe–Mn–C TWIP steels in aqueous solutions and the related hydrogen absorption. Corros Sci, 2014, 83: 234 doi: 10.1016/j.corsci.2014.02.018
    [45] Chun Y S, Park K T, Lee C S. Delayed static failure of twinning-induced plasticity steels. Scripta Mater, 2012, 66(12): 960 doi: 10.1016/j.scriptamat.2012.02.038
    [46] Heo Y U, Suh D W, Lee H C. Fabrication of an ultrafine-grained structure by a compositional pinning technique. Acta Mater, 2014, 77: 236 doi: 10.1016/j.actamat.2014.05.057
    [47] Li J J, Song R B, Li X, et al. Coupling nano-carbide strengthening with transformation induced plasticity effect to achieve over 1.5 GPa strength with 30% ductility in cold-rolled medium-Mn steel. Vacuum, 2019, 167: 223 doi: 10.1016/j.vacuum.2019.06.015
    [48] Xu Y B, Zou Y, Hu Z P, et al. Correlation between deformation behavior and austenite characteristics in a Mn–Al type TRIP steel. Mater Sci Eng A, 2017, 698: 126 doi: 10.1016/j.msea.2017.05.058
    [49] Bartlett L N, Van Aken D C, Medvedeva J, et al. An atom probe study of Kappa carbide precipitation and the effect of silicon addition. Metall Mater Trans A, 2014, 45(5): 2421 doi: 10.1007/s11661-014-2187-3
    [50] Heo Y U, Song Y Y, Park S J, et al. Influence of silicon in low density Fe–C–Mn–Al steel. Metall Mater Trans A, 2012, 43(6): 1731 doi: 10.1007/s11661-012-1149-x
    [51] Kuzmina M, Ponge D, Raabe D. Grain boundary segregation engineering and austenite reversion turn embrittlement into toughness: example of a 9 wt.% medium Mn steel. Acta Mater, 2015, 86: 182 doi: 10.1016/j.actamat.2014.12.021
    [52] Lee D, Kim J K, Lee S, et al. Microstructures and mechanical properties of Ti and Mo micro-alloyed medium Mn steel. Mater Sci Eng A, 2017, 706: 1 doi: 10.1016/j.msea.2017.08.110
    [53] Lee S, Kang S H, Nam J H, et al. Effect of tempering on the microstructure and tensile properties of a martensitic medium-Mn lightweight steel. Metall Mater Trans A, 2019, 50(6): 2655 doi: 10.1007/s11661-019-05190-4
    [54] Shin S Y, Lee H, Han S Y, et al. Correlation of microstructure and cracking phenomenon occurring during hot rolling of lightweight steel plates. Metall Mater Trans A, 2010, 41(1): 138 doi: 10.1007/s11661-009-0081-1
    [55] Han S Y, Shin S Y, Lee H J, et al. Effects of annealing temperature on microstructure and tensile properties in ferritic lightweight steels. Metall Mater Trans A, 2012, 43(3): 843 doi: 10.1007/s11661-011-0942-2
    [56] Sohn S S, Lee B J, Lee S, et al. Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel. Acta Mater, 2013, 61(15): 5626 doi: 10.1016/j.actamat.2013.06.004
    [57] Sohn S S, Lee B J, Kwak J H, et al. Effects of annealing treatment prior to cold rolling on the edge cracking phenomenon of ferritic lightweight steel. Metall Mater Trans A, 2014, 45(9): 3844 doi: 10.1007/s11661-014-2332-z
    [58] Sohn S S, Lee B J, Lee S, et al. Microstructural analysis of cracking phenomenon occurring during cold rolling of (0.1~ 0.7)C–3Mn–5Al lightweight steels. Met Mater Int, 2015, 21(1): 43 doi: 10.1007/s12540-015-1006-8
    [59] Xu R C, He Y L, Jiang H, et al. Microstructures and mechanical properties of ferrite-based lightweight steel with different compositions. J Iron Steel Res Int, 2017, 24(7): 737 doi: 10.1016/S1006-706X(17)30111-5
    [60] Sohn S S, Lee B J, Lee S, et al. Effect of annealing temperature on microstructural modification and tensile properties in 0.35C–3.5Mn–5.8Al lightweight steel. Acta Mater, 2013, 61(13): 5050 doi: 10.1016/j.actamat.2013.04.038
    [61] Song H, Lee S G, Sohn S S, et al. Effect of strain-induced age hardening on yield strength improvement in ferrite-austenite duplex lightweight steels. Metall Mater Trans A, 2016, 47(11): 5372 doi: 10.1007/s11661-016-3706-1
    [62] Sohn S S, Choi K, Kwak J H, et al. Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms. Acta Mater, 2014, 78: 181 doi: 10.1016/j.actamat.2014.06.059
    [63] Seo C H, Kwon K H, Choi K, et al. Deformation behavior of ferrite-austenite duplex lightweight Fe–Mn–Al–C steel. Scripta Mater, 2012, 66(8): 519 doi: 10.1016/j.scriptamat.2011.12.026
    [64] Sohn S S, Song H, Kim J G, et al. Effects of annealing treatment prior to cold rolling on delayed fracture properties in ferrite-austenite duplex lightweight steels. Metall Mater Trans A, 2016, 47(2): 706 doi: 10.1007/s11661-015-3187-7
    [65] Sohn S S, Lee S, Lee B J, et al. Microstructural developments and tensile properties of lean Fe–Mn–Al–C lightweight steels. JOM, 2014, 66(9): 1857 doi: 10.1007/s11837-014-1128-3
    [66] Park J, Jo M C, Jeong H J, et al. Interpretation of dynamic tensile behavior by austenite stability in ferrite-austenite duplex lightweight steels. Sci Rep, 2017, 7: 15726 doi: 10.1038/s41598-017-15991-5
    [67] Sohn S S, Song H, Kwak J H, et al. Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels. Sci Rep, 2017, 7: 1927 doi: 10.1038/s41598-017-02183-4
    [68] Song H, Sohn S S, Kwak J H, et al. Effect of austenite stability on microstructural evolution and tensile properties in intercritically annealed medium-Mn lightweight steels. Metall Mater Trans A, 2016, 47(6): 2674 doi: 10.1007/s11661-016-3433-7
    [69] Lee S, Shin S, Kwon M, et al. Tensile properties of medium Mn steel with a bimodal UFG α+γ and Coarse δ-Ferrite microstructure. Metall Mater Trans A, 2017, 48(4): 1678
    [70] Jeong J, Lee C Y, Park I J, et al. Isothermal precipitation behavior of κ-carbide in the Fe–9Mn–6Al–0.15C lightweight steel with a multiphase microstructure. J Alloys Compd, 2013, 574: 299 doi: 10.1016/j.jallcom.2013.05.138
    [71] Lee S, Jeong J, Lee Y K. Precipitation and dissolution behavior of κ-carbide during continuous heating in Fe–9.3Mn–5.6Al–0.16C lightweight steel. J Alloys Compd, 2015, 648: 149 doi: 10.1016/j.jallcom.2015.06.048
    [72] Chen S P, Rana R, Haldar A, et al. Current state of Fe–Mn–Al–C low density steels. Prog Mater Sci, 2017, 89: 345 doi: 10.1016/j.pmatsci.2017.05.002
    [73] Palm M, Inden G. Experimental determination of phase equilibria in the Fe–Al–C system. Intermetallics, 1995, 3(6): 443 doi: 10.1016/0966-9795(95)00003-H
    [74] Kimura Y, Handa K, Hayashi K, et al. Microstructure control and ductility improvement of the two-phase γ-Fe/κ-(Fe, Mn)3AlC alloys in the Fe–Mn–Al–C quaternary system. Intermetallics, 2004, 12(6): 607 doi: 10.1016/j.intermet.2004.03.010
    [75] Huang H, Gan D, Kao P W. Effect of alloying additions on the κ phase precipitation in austenitic Fe–Mn–Al–C alloys. Scripta Metall Mater, 1994, 30(4): 499 doi: 10.1016/0956-716X(94)90610-6
    [76] Li M C, Chang H, Kao P W, et al. The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe–Mn–Al–C alloys. Mater Chem Phys, 1999, 59(1): 96 doi: 10.1016/S0254-0584(99)00026-7
    [77] Ishida K, Ohtani H, Satoh N, et al. Phase Equilibria in Fe–Mn–Al–C Alloys. ISIJ Int, 1990, 30(8): 680 doi: 10.2355/isijinternational.30.680
    [78] Chin K G, Lee K J, Kwak J H, et al. Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels. J Alloys Compd, 2010, 505(1): 217 doi: 10.1016/j.jallcom.2010.06.032
    [79] Bale C W, Belisle E, Chartrand P, et al. FactSage thermochemical software and databases-recent developments. Calphad, 2009, 33(2): 295 doi: 10.1016/j.calphad.2008.09.009
    [80] Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloy. Mater Sci Eng A, 2004, 387-389: 158 doi: 10.1016/j.msea.2004.01.059
    [81] Lee S, Estrin Y, De Cooman B C. Effect of the strain rate on the TRIP–TWIP transition in austenitic Fe–12 pct Mn–0.6 pct C TWIP steel. Metall Mater Trans A, 2014, 45(2): 717 doi: 10.1007/s11661-013-2028-9
    [82] Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Mater, 2014, 68: 238 doi: 10.1016/j.actamat.2014.01.001
    [83] Lee Y K, Choi C. Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe–Mn binary system. Metall Mater Trans A, 2000, 31(2): 355 doi: 10.1007/s11661-000-0271-3
    [84] Zambrano O A. Stacking fault energy maps of Fe–Mn–Al–C steels: effect of temperature, grain size, and variations in compositions. J Eng Mater Technol, 2016, 138(4): 041010 doi: 10.1115/1.4033632
    [85] Dumay A, Chateau J P, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater Sci Eng A, 2008, 483-484: 184 doi: 10.1016/j.msea.2006.12.170
    [86] Long C X. Mechanical Properties and Microstructure of Fe–20Mn–2.6Al–2.6Si TRIP/TWIP Steel[Dissertation]. Changsha: Hunan University, 2012

    龍彩霞. Fe–20Mn–2.6Al–2.6Si TRIP/TWIP鋼的力學性能和微觀組織研究[學位論文]. 長沙: 湖南大學, 2012
    [87] Haidemenopoulos G N, Vasilakos A N. On the thermodynamic stability of retained austenite in 4340 steel. J Alloys Compd, 1997, 247(1-2): 128 doi: 10.1016/S0925-8388(96)02574-1
    [88] Timokhina I B, Hodgson P D, Pereloma E V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Mater Trans A, 2004, 35(8): 2331 doi: 10.1007/s11661-006-0213-9
    [89] Yang H S, Bhadeshia H K D H. Austenite grain size and the martensite-start temperature. Scripta Mater, 2009, 60(7): 493 doi: 10.1016/j.scriptamat.2008.11.043
    [90] Haidemenopoulos G N, Vasilakos A N. Modelling of austenite stability in low-alloy triple-phase steels. Steel Res, 1996, 67(11): 513 doi: 10.1002/srin.199605529
    [91] Zhou S, Zhang K, Wang Y, et al. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process. Mater Sci Eng A, 2011, 528(27): 8006 doi: 10.1016/j.msea.2011.07.008
    [92] Mi Z L, Tang D, Jiang H T, et al. Effects of annealing temperature on the microstructure and properties of the 25Mn–3Si–3Al TWIP steel. Int J Miner Metall Mater, 2009, 16(2): 154 doi: 10.1016/S1674-4799(09)60026-1
    [93] Hu C, Yang G, Nie X Q, et al. Analysis of TWIP effect. Iron Steel, 2010, 45(8): 70

    胡超, 楊鋼, 聶學青, 等. TWIP效應分析. 鋼鐵, 2010, 45(8):70
    [94] Choi H, Lee S, Lee J, et al. Characterization of fracture in medium Mn steel. Mater Sci Eng A, 2017, 687: 200 doi: 10.1016/j.msea.2017.01.055
  • 加載中
圖(13) / 表(1)
計量
  • 文章訪問數:  3124
  • HTML全文瀏覽量:  1362
  • PDF下載量:  251
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-08-27
  • 刊出日期:  2020-07-01

目錄

    /

    返回文章
    返回