[1] |
Kistler S S. Coherent expanded aerogels and jellies. Nature, 1931, 127(3211): 741
|
[2] |
Pierre A C, Pajonk G M. Chemistry of aerogels and their applications. Chem Rev, 2002, 102(11): 4243 doi: 10.1021/cr0101306
|
[3] |
Salimian S, Zadhoush A, Naeimirad M, et al. A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites. Polym Compos, 2018, 39(10): 3383 doi: 10.1002/pc.24412
|
[4] |
Schaefer D W, Keefer K D. Structure of random porous materials: silica aerogel. Phys Rev Lett, 1986, 56(20): 2199 doi: 10.1103/PhysRevLett.56.2199
|
[5] |
Hench L L, West J K. The sol-gel process. Chem Rev, 1990, 90(1): 33 doi: 10.1021/cr00099a003
|
[6] |
Brinker C J, Scherer G W. Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing. Academic Press, 2013
|
[7] |
Wang B H, Yu C Y, Wang X Z. New technology of supercritical drying of nano-porous materials. Chem Eng China, 2005, 33(2): 13 doi: 10.3969/j.issn.1005-9954.2005.02.004王寶和, 于才淵, 王喜忠. 納米多孔材料的超臨界干燥新技術. 化學工程, 2005, 33(2):13 doi: 10.3969/j.issn.1005-9954.2005.02.004
|
[8] |
Zhang Z, Wang X D, Wu Y, et al. Aerogels and their applications-A short review. J Chin Ceram Soc, 2018, 46(10): 1426張澤, 王曉棟, 吳宇, 等. 氣凝膠材料及其應用. 硅酸鹽學報, 2018, 46(10):1426
|
[9] |
Thapliyal P C, Singh K. Aerogels as promising thermal insulating materials: an overview. J Mater, 2014, 2014: 127049
|
[10] |
Ziegler C, Wolf A, Liu W, et al. Modern inorganic aerogels. Angew Chem Int Ed, 2017, 56(43): 13200 doi: 10.1002/anie.201611552
|
[11] |
Sayevich V, Cai B, Benad A, et al. 3D assembly of all-inorganic colloidal nanocrystals into gels and aerogels. Angew Chem Int Ed, 2016, 55(21): 6334 doi: 10.1002/anie.201600094
|
[12] |
Tan C, Fung B M, Newman J K, et al. Organic aerogels with very high impact strength. Adv Mater, 2001, 13(9): 644 doi: 10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-#
|
[13] |
Zhu C Z, Shi Q R, Fu S F, et al. Efficient synthesis of MCu (M= Pd, Pt, and Au) aerogels with accelerated gelation kinetics and their high electrocatalytic activity. Adv Mater, 2016, 28(39): 8779 doi: 10.1002/adma.201602546
|
[14] |
Zu G Q, Shen J, Wang W Q, et al. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds. ACS Appl Mater Interfaces, 2015, 7(9): 5400 doi: 10.1021/am5089132
|
[15] |
Subrahmanyam K S, Sarma D, Malliakas C D, et al. Chalcogenide aerogels as sorbents for radioactive iodine. Chem Mater, 2015, 27(7): 2619 doi: 10.1021/acs.chemmater.5b00413
|
[16] |
Shi M J, Tang C G, Yang X D, et al. Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures. RSC Adv, 2017, 7(7): 4039 doi: 10.1039/C6RA26831E
|
[17] |
Akimov Y K. Fields of application of aerogels. Instrum Exp Tech, 2003, 46(3): 287 doi: 10.1023/A:1024401803057
|
[18] |
Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci, 1989, 24(9): 3221 doi: 10.1007/BF01139044
|
[19] |
Alshrah M, Mark L H, Zhao C X, et al. Nanostructure to thermal property relationship of resorcinol formaldehyde aerogels using the fractal technique. Nanoscale, 2018, 10(22): 10564 doi: 10.1039/C8NR01375F
|
[20] |
Bhuiyan M A R, Wang L J, Shaid A, et al. Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection. Prog Org Coat, 2019, 131: 100 doi: 10.1016/j.porgcoat.2019.01.041
|
[21] |
Cz?onka S, Bertino M F, Ko?ny J, et al. Freeze-drying method as a new approach to the synthesis of polyurea aerogels from isocyanate and water. J Sol-Gel Sci Technol, 2018, 87(3): 685 doi: 10.1007/s10971-018-4769-9
|
[22] |
Wang X, Zhang H, Jana S C. Sulfonated syndiotactic polystyrene aerogels: properties and applications. J Mater Chem A, 2013, 1(44): 13989 doi: 10.1039/c3ta13099a
|
[23] |
Erlandsson J, Pettersson T, Ingverud T, et al. On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. J Mater Chem A, 2018, 6(40): 19371 doi: 10.1039/C8TA06319B
|
[24] |
Marin M A, Mallepally R R, McHugh M A. Silk fibroin aerogels for drug delivery applications. J Supercrit Fluids, 2014, 91: 84 doi: 10.1016/j.supflu.2014.04.014
|
[25] |
Chen Y, Shao G F, Wu X D, et al. Advances in polymer aerogels. Mater Rev, 2016, 30(7): 55陳穎, 邵高峰, 吳曉棟, 等. 聚合物氣凝膠研究進展. 材料導報, 2016, 30(7):55
|
[26] |
Pei X L, Ji P, Zheng W G, et al. Progress in preparation of high-performance polyimide aerogels. Polym Bulletin, 2016(9): 262裴學良, 季鵬, 鄭文革, 等. 高性能聚酰亞胺氣凝膠的制備進展. 高分子通報, 2016(9):262
|
[27] |
Ma R, Baldwin A F, Wang C C, et al. Rationally designed polyimides for high-energy density capacitor applications. ACS Appl Mater Interfaces, 2014, 6(13): 10445 doi: 10.1021/am502002v
|
[28] |
Sroog C E. Polyimides. Prog Polym Sci, 1991, 16(4): 561 doi: 10.1016/0079-6700(91)90010-I
|
[29] |
Kurosawa T, Higashihara T, Ueda M. Polyimide memory: a pithy guideline for future applications. Polym Chem, 2013, 4(1): 16 doi: 10.1039/C2PY20632C
|
[30] |
Qian Z C, Wang Z, Chen Y, et al. Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters. J Mater Chem A, 2018, 6(3): 828 doi: 10.1039/C7TA09054D
|
[31] |
Landis A L, Naselow A B. Method of Preparing High Molecular Weight Polyimide, Product and Use: U.S. Patent 4645824. 1987-2-24
|
[32] |
Meador M A B, Malow E J, Silva R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl Mater Interfaces, 2012, 4(2): 536 doi: 10.1021/am2014635
|
[33] |
Guo H Q, Meador M A B, McCorkle L, et al. Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength. ACS Appl Mater Interfaces, 2012, 4(10): 5422 doi: 10.1021/am301347a
|
[34] |
Williams J C, Meador M A B, McCorkle L, et al. Synthesis and properties of step-growth polyamide aerogels cross-linked with triacid chlorides. Chem Mater, 2014, 26(14): 4163 doi: 10.1021/cm5012313
|
[35] |
Kawagishi K, Saito H, Furukawa H, et al. Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels. Macromol Rapid Commun, 2007, 28(1): 96 doi: 10.1002/marc.200600587
|
[36] |
Li B Y, Jiang S J, Yu S W, et al. Co-polyimide aerogel using aromatic monomers and aliphatic monomers as mixing diamines. J Sol-Gel Sci Technol, 2018, 88(2): 386 doi: 10.1007/s10971-018-4800-1
|
[37] |
Zhu Z X, Yao H J, Dong J X, et al. High-mechanical-strength polyimide aerogels crosslinked with 4,4′-oxydianiline-functionalized carbon nanotubes. Carbon, 2019, 144: 24 doi: 10.1016/j.carbon.2018.11.057
|
[38] |
Nguyen B N, Cudjoe E, Douglas A, et al. Polyimide cellulose nanocrystal composite aerogels. Macromolecules, 2016, 49(5): 1692 doi: 10.1021/acs.macromol.5b01573
|
[39] |
Zuo L Z, Fan W, Zhang Y F, et al. Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. Compos Sci Technol, 2017, 139: 57 doi: 10.1016/j.compscitech.2016.12.008
|
[40] |
Zhao X F, Zhang J, Wang X Q, et al. Polyimide aerogels crosslinked with MWCNT for enhanced visible-light photocatalytic activity. Appl Surf Sci, 2019, 478: 266 doi: 10.1016/j.apsusc.2019.01.209
|
[41] |
Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, et al. One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons. J Mater Chem, 2010, 20(43): 9666 doi: 10.1039/c0jm01844a
|
[42] |
Leventis N, Chandrasekaran N, Sadekar A G, et al. One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc, 2009, 131(13): 4576 doi: 10.1021/ja809746t
|
[43] |
Xie W, Pan W P, Chuang K. Thermal degradation study of polymerization of monomeric reactants (PMR) polyimides. J Therm Anal Calorim, 2001, 64(2): 477 doi: 10.1023/A:1011566127251
|
[44] |
Leventis N, Sotiriou-Leventis C, Mohite D P, et al. Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chem Mater, 2011, 23(8): 2250 doi: 10.1021/cm200323e
|
[45] |
Teo N, Jana S C. Solvent effects on tuning pore structures in polyimide aerogels. Langmuir, 2018, 34(29): 8581 doi: 10.1021/acs.langmuir.8b01513
|
[46] |
Wu S, Du A, Huang S M, et al. Effects of monomer rigidity on the microstructures and properties of polyimide aerogels cross-linked with low cost aminosilane. RSC Adv, 2016, 6(27): 22868 doi: 10.1039/C5RA28152K
|
[47] |
Viggiano R P, Williams J C, Schiraldi D A, et al. Effect of bulky substituents in the polymer backbone on the properties of polyimide aerogels. ACS Appl Mater Interfaces, 2017, 9(9): 8287 doi: 10.1021/acsami.6b15440
|
[48] |
Wu W, Wang K, Zhan M S. Preparation and performance of polyimide-reinforced clay aerogel composites. Ind Eng Chem Res, 2012, 51(39): 12821 doi: 10.1021/ie301622s
|
[49] |
Nguyen B N, Meador M A B, Scheiman D, et al. Polyimide aerogels using triisocyanate as cross-linker. ACS Appl Mater Interfaces, 2017, 9(32): 27313 doi: 10.1021/acsami.7b07821
|
[50] |
Wu T T, Dong J, Gan F, et al. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups. Appl Surf Sci, 2018, 440: 595 doi: 10.1016/j.apsusc.2018.01.132
|
[51] |
Shen D X, Liu J G, Yang H X, et al. Intrinsically highly hydrophobic semi-alicyclic fluorinated polyimide aerogel with ultralow dielectric constants. Chem Lett, 2013, 42(10): 1230 doi: 10.1246/cl.130623
|
[52] |
Wu P, Zhang B, Yu Z, et al. Anisotropic polyimide aerogels fabricated by directional freezing. J Appl Polym Sci, 2019, 136(11): 47179 doi: 10.1002/app.47179
|
[53] |
Wu Y W, Zhang W C, Yang R J. Ultralight and low thermal conductivity polyimide-polyhedral oligomeric silsesquioxanes aerogels. Macromol Mater Eng, 2018, 303(2): 1700403 doi: 10.1002/mame.201700403
|
[54] |
Meador M A B, Agnello M, McCorkle L, et al. Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Appl Mater Interfaces, 2016, 8(42): 29073 doi: 10.1021/acsami.6b10248
|
[55] |
Xu L, Ma Y Y, Xie J W, et al. Sandwich-type porous polyimide film with improved dielectric, water resistance and mechanical properties. J Mater Sci, 2019, 54(7): 5952 doi: 10.1007/s10853-018-03248-z
|
[56] |
Ren R P, Wang Z, Ren J, et al. Highly compressible polyimide/graphene aerogel for efficient oil/water separation. J Mater Sci, 2019, 54(7): 5918 doi: 10.1007/s10853-018-03238-1
|
[57] |
Zhang L, Wu J T, Zhang X M, et al. Multifunctional, marvelous polyimide aerogels as highly efficient and recyclable sorbents. RSC Adv, 2015, 5(17): 12592 doi: 10.1039/C4RA15115A
|
[58] |
Yan P, Zhou B, Du A. Synthesis of polyimide cross-linked silica aerogels with good acoustic performance. RSC Adv, 2014, 4(102): 58252 doi: 10.1039/C4RA08846H
|