<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

聚酰亞胺氣凝膠材料的制備及其應用

劉婷 劉源 王曉棟 沈軍 張澤 習爽 劉群

劉婷, 劉源, 王曉棟, 沈軍, 張澤, 習爽, 劉群. 聚酰亞胺氣凝膠材料的制備及其應用[J]. 工程科學學報, 2020, 42(1): 39-47. doi: 10.13374/j.issn2095-9389.2019.08.12.003
引用本文: 劉婷, 劉源, 王曉棟, 沈軍, 張澤, 習爽, 劉群. 聚酰亞胺氣凝膠材料的制備及其應用[J]. 工程科學學報, 2020, 42(1): 39-47. doi: 10.13374/j.issn2095-9389.2019.08.12.003
LIU Ting, LIU Yuan, WANG Xiao-dong, SHEN Jun, ZHANG Ze, XI Shuang, LIU Qun. Preparation and application of polyimide aerogel materials[J]. Chinese Journal of Engineering, 2020, 42(1): 39-47. doi: 10.13374/j.issn2095-9389.2019.08.12.003
Citation: LIU Ting, LIU Yuan, WANG Xiao-dong, SHEN Jun, ZHANG Ze, XI Shuang, LIU Qun. Preparation and application of polyimide aerogel materials[J]. Chinese Journal of Engineering, 2020, 42(1): 39-47. doi: 10.13374/j.issn2095-9389.2019.08.12.003

聚酰亞胺氣凝膠材料的制備及其應用

doi: 10.13374/j.issn2095-9389.2019.08.12.003
基金項目: 國家重點研發計劃“納米科技”重點專項資助項目(2017YFA0204600);國家自然科學基金面上資助項目(11874288)
詳細信息
    通訊作者:

    E-mail: 08conyliu@#edu.cn

  • 中圖分類號: TG142.71

Preparation and application of polyimide aerogel materials

More Information
  • 摘要: 聚酰亞胺(polyimide,PI)由于具有較好的力學性能、優異的耐化學性、良好的介電性能和高溫穩定性,被認為是一種應用前景廣泛的高溫工程聚合物。聚酰亞胺的各類制品如薄膜、涂料、膠黏劑、光電材料、先進復合材料、微電子器件、分離膜以及光刻膠等已經被廣泛應用于電子信息、防火防彈、航空航天、氣液分離以及光電液晶等領域。聚酰亞胺氣凝膠(PIA)是由聚合物分子鏈構成的相互交聯的三維多孔材料,結合了聚酰亞胺和氣凝膠的優異性能,使其不但具有聚酰亞胺的優異特性,而且具有氣凝膠的輕質超低密度、高比表面積、低導熱系數以及低介電常數等突出特點,因此聚酰亞胺氣凝膠材料迅速發展成為性能優異的有機氣凝膠之一,并且在航空航天、電子通訊、隔熱阻燃、隔音吸聲以及吸附清潔等領域展示出廣闊的應用前景。鑒于該材料的這些特質,本文對聚酰亞胺氣凝膠的制備方法、影響因素(溶劑效應、單體結構和固含量)以及應用進行了論述,并對聚酰亞胺氣凝膠材料的未來發展進行了展望。

     

  • 圖  1  聚酰亞胺氣凝膠的合成流程圖(a)和化學反應(b)

    Figure  1.  Schematic diagram for the synthesis (a) and chemical reactions (b) of the PI aerogel

    圖  2  酸酐與異氰酸酯的反應機制

    Figure  2.  Reaction mechanism of anhydride and isocyanate

    圖  3  以酸酐和異氰酸酯為原料一步合成聚酰亞胺氣凝膠的化學反應

    Figure  3.  Chemical reactions of PIA synthesized from anhydride and isocyanate in one step

    圖  4  降冰片烯封端的二胺經由開環聚合法的聚合過程

    Figure  4.  Polymerization of bis-NAD via ROMP

    圖  5  9,9′-二(4-氨基苯基)芴的結構式

    Figure  5.  Constitutional formula of BAPF

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Kistler S S. Coherent expanded aerogels and jellies. Nature, 1931, 127(3211): 741
    [2] Pierre A C, Pajonk G M. Chemistry of aerogels and their applications. Chem Rev, 2002, 102(11): 4243 doi: 10.1021/cr0101306
    [3] Salimian S, Zadhoush A, Naeimirad M, et al. A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites. Polym Compos, 2018, 39(10): 3383 doi: 10.1002/pc.24412
    [4] Schaefer D W, Keefer K D. Structure of random porous materials: silica aerogel. Phys Rev Lett, 1986, 56(20): 2199 doi: 10.1103/PhysRevLett.56.2199
    [5] Hench L L, West J K. The sol-gel process. Chem Rev, 1990, 90(1): 33 doi: 10.1021/cr00099a003
    [6] Brinker C J, Scherer G W. Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing. Academic Press, 2013
    [7] Wang B H, Yu C Y, Wang X Z. New technology of supercritical drying of nano-porous materials. Chem Eng China, 2005, 33(2): 13 doi: 10.3969/j.issn.1005-9954.2005.02.004

    王寶和, 于才淵, 王喜忠. 納米多孔材料的超臨界干燥新技術. 化學工程, 2005, 33(2):13 doi: 10.3969/j.issn.1005-9954.2005.02.004
    [8] Zhang Z, Wang X D, Wu Y, et al. Aerogels and their applications-A short review. J Chin Ceram Soc, 2018, 46(10): 1426

    張澤, 王曉棟, 吳宇, 等. 氣凝膠材料及其應用. 硅酸鹽學報, 2018, 46(10):1426
    [9] Thapliyal P C, Singh K. Aerogels as promising thermal insulating materials: an overview. J Mater, 2014, 2014: 127049
    [10] Ziegler C, Wolf A, Liu W, et al. Modern inorganic aerogels. Angew Chem Int Ed, 2017, 56(43): 13200 doi: 10.1002/anie.201611552
    [11] Sayevich V, Cai B, Benad A, et al. 3D assembly of all-inorganic colloidal nanocrystals into gels and aerogels. Angew Chem Int Ed, 2016, 55(21): 6334 doi: 10.1002/anie.201600094
    [12] Tan C, Fung B M, Newman J K, et al. Organic aerogels with very high impact strength. Adv Mater, 2001, 13(9): 644 doi: 10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-#
    [13] Zhu C Z, Shi Q R, Fu S F, et al. Efficient synthesis of MCu (M= Pd, Pt, and Au) aerogels with accelerated gelation kinetics and their high electrocatalytic activity. Adv Mater, 2016, 28(39): 8779 doi: 10.1002/adma.201602546
    [14] Zu G Q, Shen J, Wang W Q, et al. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds. ACS Appl Mater Interfaces, 2015, 7(9): 5400 doi: 10.1021/am5089132
    [15] Subrahmanyam K S, Sarma D, Malliakas C D, et al. Chalcogenide aerogels as sorbents for radioactive iodine. Chem Mater, 2015, 27(7): 2619 doi: 10.1021/acs.chemmater.5b00413
    [16] Shi M J, Tang C G, Yang X D, et al. Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures. RSC Adv, 2017, 7(7): 4039 doi: 10.1039/C6RA26831E
    [17] Akimov Y K. Fields of application of aerogels. Instrum Exp Tech, 2003, 46(3): 287 doi: 10.1023/A:1024401803057
    [18] Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci, 1989, 24(9): 3221 doi: 10.1007/BF01139044
    [19] Alshrah M, Mark L H, Zhao C X, et al. Nanostructure to thermal property relationship of resorcinol formaldehyde aerogels using the fractal technique. Nanoscale, 2018, 10(22): 10564 doi: 10.1039/C8NR01375F
    [20] Bhuiyan M A R, Wang L J, Shaid A, et al. Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection. Prog Org Coat, 2019, 131: 100 doi: 10.1016/j.porgcoat.2019.01.041
    [21] Cz?onka S, Bertino M F, Ko?ny J, et al. Freeze-drying method as a new approach to the synthesis of polyurea aerogels from isocyanate and water. J Sol-Gel Sci Technol, 2018, 87(3): 685 doi: 10.1007/s10971-018-4769-9
    [22] Wang X, Zhang H, Jana S C. Sulfonated syndiotactic polystyrene aerogels: properties and applications. J Mater Chem A, 2013, 1(44): 13989 doi: 10.1039/c3ta13099a
    [23] Erlandsson J, Pettersson T, Ingverud T, et al. On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. J Mater Chem A, 2018, 6(40): 19371 doi: 10.1039/C8TA06319B
    [24] Marin M A, Mallepally R R, McHugh M A. Silk fibroin aerogels for drug delivery applications. J Supercrit Fluids, 2014, 91: 84 doi: 10.1016/j.supflu.2014.04.014
    [25] Chen Y, Shao G F, Wu X D, et al. Advances in polymer aerogels. Mater Rev, 2016, 30(7): 55

    陳穎, 邵高峰, 吳曉棟, 等. 聚合物氣凝膠研究進展. 材料導報, 2016, 30(7):55
    [26] Pei X L, Ji P, Zheng W G, et al. Progress in preparation of high-performance polyimide aerogels. Polym Bulletin, 2016(9): 262

    裴學良, 季鵬, 鄭文革, 等. 高性能聚酰亞胺氣凝膠的制備進展. 高分子通報, 2016(9):262
    [27] Ma R, Baldwin A F, Wang C C, et al. Rationally designed polyimides for high-energy density capacitor applications. ACS Appl Mater Interfaces, 2014, 6(13): 10445 doi: 10.1021/am502002v
    [28] Sroog C E. Polyimides. Prog Polym Sci, 1991, 16(4): 561 doi: 10.1016/0079-6700(91)90010-I
    [29] Kurosawa T, Higashihara T, Ueda M. Polyimide memory: a pithy guideline for future applications. Polym Chem, 2013, 4(1): 16 doi: 10.1039/C2PY20632C
    [30] Qian Z C, Wang Z, Chen Y, et al. Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters. J Mater Chem A, 2018, 6(3): 828 doi: 10.1039/C7TA09054D
    [31] Landis A L, Naselow A B. Method of Preparing High Molecular Weight Polyimide, Product and Use: U.S. Patent 4645824. 1987-2-24
    [32] Meador M A B, Malow E J, Silva R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl Mater Interfaces, 2012, 4(2): 536 doi: 10.1021/am2014635
    [33] Guo H Q, Meador M A B, McCorkle L, et al. Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength. ACS Appl Mater Interfaces, 2012, 4(10): 5422 doi: 10.1021/am301347a
    [34] Williams J C, Meador M A B, McCorkle L, et al. Synthesis and properties of step-growth polyamide aerogels cross-linked with triacid chlorides. Chem Mater, 2014, 26(14): 4163 doi: 10.1021/cm5012313
    [35] Kawagishi K, Saito H, Furukawa H, et al. Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels. Macromol Rapid Commun, 2007, 28(1): 96 doi: 10.1002/marc.200600587
    [36] Li B Y, Jiang S J, Yu S W, et al. Co-polyimide aerogel using aromatic monomers and aliphatic monomers as mixing diamines. J Sol-Gel Sci Technol, 2018, 88(2): 386 doi: 10.1007/s10971-018-4800-1
    [37] Zhu Z X, Yao H J, Dong J X, et al. High-mechanical-strength polyimide aerogels crosslinked with 4,4′-oxydianiline-functionalized carbon nanotubes. Carbon, 2019, 144: 24 doi: 10.1016/j.carbon.2018.11.057
    [38] Nguyen B N, Cudjoe E, Douglas A, et al. Polyimide cellulose nanocrystal composite aerogels. Macromolecules, 2016, 49(5): 1692 doi: 10.1021/acs.macromol.5b01573
    [39] Zuo L Z, Fan W, Zhang Y F, et al. Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. Compos Sci Technol, 2017, 139: 57 doi: 10.1016/j.compscitech.2016.12.008
    [40] Zhao X F, Zhang J, Wang X Q, et al. Polyimide aerogels crosslinked with MWCNT for enhanced visible-light photocatalytic activity. Appl Surf Sci, 2019, 478: 266 doi: 10.1016/j.apsusc.2019.01.209
    [41] Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, et al. One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons. J Mater Chem, 2010, 20(43): 9666 doi: 10.1039/c0jm01844a
    [42] Leventis N, Chandrasekaran N, Sadekar A G, et al. One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc, 2009, 131(13): 4576 doi: 10.1021/ja809746t
    [43] Xie W, Pan W P, Chuang K. Thermal degradation study of polymerization of monomeric reactants (PMR) polyimides. J Therm Anal Calorim, 2001, 64(2): 477 doi: 10.1023/A:1011566127251
    [44] Leventis N, Sotiriou-Leventis C, Mohite D P, et al. Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chem Mater, 2011, 23(8): 2250 doi: 10.1021/cm200323e
    [45] Teo N, Jana S C. Solvent effects on tuning pore structures in polyimide aerogels. Langmuir, 2018, 34(29): 8581 doi: 10.1021/acs.langmuir.8b01513
    [46] Wu S, Du A, Huang S M, et al. Effects of monomer rigidity on the microstructures and properties of polyimide aerogels cross-linked with low cost aminosilane. RSC Adv, 2016, 6(27): 22868 doi: 10.1039/C5RA28152K
    [47] Viggiano R P, Williams J C, Schiraldi D A, et al. Effect of bulky substituents in the polymer backbone on the properties of polyimide aerogels. ACS Appl Mater Interfaces, 2017, 9(9): 8287 doi: 10.1021/acsami.6b15440
    [48] Wu W, Wang K, Zhan M S. Preparation and performance of polyimide-reinforced clay aerogel composites. Ind Eng Chem Res, 2012, 51(39): 12821 doi: 10.1021/ie301622s
    [49] Nguyen B N, Meador M A B, Scheiman D, et al. Polyimide aerogels using triisocyanate as cross-linker. ACS Appl Mater Interfaces, 2017, 9(32): 27313 doi: 10.1021/acsami.7b07821
    [50] Wu T T, Dong J, Gan F, et al. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups. Appl Surf Sci, 2018, 440: 595 doi: 10.1016/j.apsusc.2018.01.132
    [51] Shen D X, Liu J G, Yang H X, et al. Intrinsically highly hydrophobic semi-alicyclic fluorinated polyimide aerogel with ultralow dielectric constants. Chem Lett, 2013, 42(10): 1230 doi: 10.1246/cl.130623
    [52] Wu P, Zhang B, Yu Z, et al. Anisotropic polyimide aerogels fabricated by directional freezing. J Appl Polym Sci, 2019, 136(11): 47179 doi: 10.1002/app.47179
    [53] Wu Y W, Zhang W C, Yang R J. Ultralight and low thermal conductivity polyimide-polyhedral oligomeric silsesquioxanes aerogels. Macromol Mater Eng, 2018, 303(2): 1700403 doi: 10.1002/mame.201700403
    [54] Meador M A B, Agnello M, McCorkle L, et al. Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Appl Mater Interfaces, 2016, 8(42): 29073 doi: 10.1021/acsami.6b10248
    [55] Xu L, Ma Y Y, Xie J W, et al. Sandwich-type porous polyimide film with improved dielectric, water resistance and mechanical properties. J Mater Sci, 2019, 54(7): 5952 doi: 10.1007/s10853-018-03248-z
    [56] Ren R P, Wang Z, Ren J, et al. Highly compressible polyimide/graphene aerogel for efficient oil/water separation. J Mater Sci, 2019, 54(7): 5918 doi: 10.1007/s10853-018-03238-1
    [57] Zhang L, Wu J T, Zhang X M, et al. Multifunctional, marvelous polyimide aerogels as highly efficient and recyclable sorbents. RSC Adv, 2015, 5(17): 12592 doi: 10.1039/C4RA15115A
    [58] Yan P, Zhou B, Du A. Synthesis of polyimide cross-linked silica aerogels with good acoustic performance. RSC Adv, 2014, 4(102): 58252 doi: 10.1039/C4RA08846H
  • 加載中
圖(5)
計量
  • 文章訪問數:  2418
  • HTML全文瀏覽量:  2024
  • PDF下載量:  209
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-08-12
  • 刊出日期:  2020-01-01

目錄

    /

    返回文章
    返回