<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電鍍Cr涂層對TC4鈦合金燃燒性能的影響

熊家帥 黃進峰 解國良 喻嘉彬 張誠 邵磊 王亞宇 李洪瑩 何光宇

熊家帥, 黃進峰, 解國良, 喻嘉彬, 張誠, 邵磊, 王亞宇, 李洪瑩, 何光宇. 電鍍Cr涂層對TC4鈦合金燃燒性能的影響[J]. 工程科學學報, 2020, 42(8): 1007-1017. doi: 10.13374/j.issn2095-9389.2019.08.10.001
引用本文: 熊家帥, 黃進峰, 解國良, 喻嘉彬, 張誠, 邵磊, 王亞宇, 李洪瑩, 何光宇. 電鍍Cr涂層對TC4鈦合金燃燒性能的影響[J]. 工程科學學報, 2020, 42(8): 1007-1017. doi: 10.13374/j.issn2095-9389.2019.08.10.001
XIONG Jia-shuai, HUANG Jin-feng, XIE Guo-liang, YU Jia-bin, ZHANG Cheng, SHAO Lei, WANG Ya-yu, LI Hong-ying, HE Guang-yu. Effect of electroplating Cr coating on combustion characteristics of TC4 titanium alloy[J]. Chinese Journal of Engineering, 2020, 42(8): 1007-1017. doi: 10.13374/j.issn2095-9389.2019.08.10.001
Citation: XIONG Jia-shuai, HUANG Jin-feng, XIE Guo-liang, YU Jia-bin, ZHANG Cheng, SHAO Lei, WANG Ya-yu, LI Hong-ying, HE Guang-yu. Effect of electroplating Cr coating on combustion characteristics of TC4 titanium alloy[J]. Chinese Journal of Engineering, 2020, 42(8): 1007-1017. doi: 10.13374/j.issn2095-9389.2019.08.10.001

電鍍Cr涂層對TC4鈦合金燃燒性能的影響

doi: 10.13374/j.issn2095-9389.2019.08.10.001
詳細信息
    通訊作者:

    E-mail:ustbhuangjf@163.com

  • 中圖分類號: TG146.4

Effect of electroplating Cr coating on combustion characteristics of TC4 titanium alloy

More Information
  • 摘要: 通過對鍍有不同厚度(0、15、30、60 μm)Cr涂層的TC4鈦合金在不同氧壓下進行的富氧點燃試驗,研究了鍍Cr層厚度對TC4鈦合金燃燒性能的影響規律,并通過掃描電子顯微鏡(Scanning electron microscope, SEM)、能譜分析(Energy dispersive spectrometer,EDS)和X射線衍射(X-ray diffraction, XRD)等手段進行顯微組織分析。結果表明:當Cr層厚度為15 μm和30 μm時,對TC4的燃燒臨界氧壓無明顯影響,而Cr層厚度增加到60 μm時,可將TC4的燃燒臨界氧壓由0.07 MPa提高至0.15 MPa。同時,燃燒速率隨Cr層厚度的增加而降低,說明Cr層厚度的增加能有效抑制火焰傳播速度。其作用機理可能是在燃燒的過程中,表層Cr元素通過固相擴散、熔化等方式進入熔池,與合金中的Al、V元素共同析出,形成了彌散分布的富Cr、Al、V相,并減少了Al與O的結合,對O元素的擴散有阻礙作用,從而降低了燃燒速率。

     

  • 圖  1  電沉積時間與厚度的關系。(a)0.5 h;(b)1 h;(c)2 h

    Figure  1.  Diagram of plating time and thickness: (a) 0.5 h; (b) 1 h; (c) 2 h

    圖  2  富氧點燃試驗裝置原理圖[19]

    Figure  2.  Schematic of the PIC test apparatus

    圖  3  鍍有60 μm Cr層的TC4合金燃燒過程觀察。(a)16.5 s;(b)16.9 s;(c)17.5 s;(d)18 s;(e)19.6 s;(f)20 s;(g)20.6 s;(h)22 s

    Figure  3.  Combustion process of TC4 alloy coated with 60 μm chromium layer: (a) 16.5 s; (b) 16.9 s; (c) 17.5 s; (d) 18 s; (e) 19.6 s; (f)20 s; (g) 20.6 s; (h) 22 s

    圖  4  Cr層厚度與TC4燃燒臨界氧壓的關系

    Figure  4.  Relationship between the thickness of chromium layer and the threshold pressure of TC4 alloy

    圖  5  Cr層厚度與燃燒速率之間的關系

    Figure  5.  Combustion velocity-pressure relationship with different chromium layer thickness

    圖  6  鍍Cr后的樣品燃燒時被氬氣吹滅后的宏觀形貌

    Figure  6.  Macroscopic morphology of chrome-plated samples after being blown away by argon

    圖  7  TC4基體氬氣吹滅后的SEM圖。(a)Ⅰ—氧化物區、Ⅱ—熔化區;(b)(a)的局部放大;(c)(a)的局部放大(Ⅱ—熔化區);(d)Ⅲ—熔化區、Ⅳ—過渡區、Ⅴ—熱影響區

    Figure  7.  SEM image of TC4 substrate being blown away by argon: (a) I—oxide zone, II—fusion zone; (b) partial enlargement of (a); (c) partial enlargement of (a) (II—fusion zone); (d) III—fusion zone, IV—transition zone, V—heat affected zone

    圖  8  60 μm Cr層的試樣經氬氣吹滅后的SEM圖。(a) Ⅰ—氧化物區、Ⅱ—熔化區末端;(b)Ⅲ—熔化區;(c)Ⅵ—熔化區、Ⅴ—過渡區、Ⅵ—熱影響區;(d)熱影響區側面

    Figure  8.  SEM image of a 60 μm chromium layer sample being blown away by argon (a) I―oxide zone, II― fusion zone end; (b) III―fusion zone; (c) VI―fusion zone, V―transition zone, VI―heat affected zone; (d) side of heat affected zone

    圖  9  60 μm鉻層的試樣經氬氣吹滅后熱影響區–基體SEM圖。(a)熱影響區近過渡區側面;(b)熱影響區近基體側面;(c)基體區側面

    Figure  9.  SEM image of the heat-affected zone-substrate of the 60 μm chromium layer being blown away by argon (a) the side of the heat-affected zone near the transition zone; (b) the heat-affected zone near the side of the substrate; (c) the side of the matrix zone

    圖  10  圖9各線元素原子含量掃描結果。(a)線1各元素原子含量變化;(b)線2各元素原子含量變化;(c)線3各元素原子含量變化;(d)線4各元素原子含量變化

    Figure  10.  EDS line scan corresponding to Fig. 9: (a) EDS line scan in line 1; (b) EDS line scan in line 2; (c) EDS line scan in line 3; (d) EDS line scan in line 4

    圖  11  TC4基體和60 μm Cr層的TC4燃燒時的揮發煙霧的XRD圖譜

    Figure  11.  XRD pattern of volatile for TC4 substrate and TC4 plated with 60 μm Cr layer

    圖  12  TC4基體和60 μm Cr層的TC4燃燒后的滴落殘渣的XRD圖譜

    Figure  12.  XRD pattern of combustion products for TC4 substrate and 60 μm Cr layer

    圖  13  金屬氧化物熔體界面上可能的化學反應的吉布斯自由能之間的比較

    Figure  13.  Comparison among the Gibbs free energies of possible chemical reactions at the alloy-oxide melt interface

    圖  14  熱影響區一側示意圖

    Figure  14.  Schematic diagram of the heat affected zone

    1—matrix; 2—Ti–Cr solid phase zone; 3—Ti–Cr liquid zone; 4—Ti–O liquid zone; 5—pure Cr solid phase zone

    表  1  TC4鈦合金化學成分(質量分數)

    Table  1.   Chemical composition of TC4 titanium alloy(mass fraction) %

    AlVFeCNHOTi
    5.5~6.83.5~4.5≤0.30≤0.10≤0.05≤0.015≤0.20bal
    下載: 導出CSV

    表  2  圖7中各點EDS分析結果(原子數分數)

    Table  2.   EDS analysis results of each point in Fig. 7 (atomic fraction) %

    ElementsPoint 1Point 2Point 3Point 4Point 5Point 6
    Ti69.7413.3484.0974.3351.1271.01
    Al5.5657.050.9513.3726.5615.00
    V0.960.000.564.9713.719.13
    O23.7429.6314.397.338.604.86
    下載: 導出CSV

    表  3  圖8中各點EDS分析結果(原子數分數)

    Table  3.   EDS analysis results of each point in Fig. 8 (atomic fraction) %

    ElementsPoint 1Point 2Point 3Point 4
    Ti58.3644.4080.493.50
    Cr0.0024.720.000.06
    Al0.5717.561.3060.95
    V0.006.560.000.05
    O41.076.7618.2135.43
    下載: 導出CSV

    表  4  純金屬在常壓下點燃時釋放的熱量[20]

    Table  4.   Heat released by pure metal when ignited under normal pressure

    MaterialOxides formedHeat of combustion/(J?g?1)
    MgMgO25000
    TiTiO216000
    AlAl2O331000
    CrCr2O310800
    下載: 導出CSV

    表  5  金屬單質生成氧化物的吉布斯自由能

    Table  5.   Gibbs free energy of metametallic oxides

    NumberEquation$\Delta G$/(kJ·mol?1)
    1$\dfrac{4}{3}$V(s)+O2(g) $ \to $$\dfrac{2}{3}$V2O3(s)?801.933+0.15835T
    2$\dfrac{4}{3}$Cr(s)+O2(g)$ \to $$\dfrac{2}{3}$Cr2O3(s)?746.840+0.17029T
    3$\dfrac{4}{3}$Al(s)+O2(g)$ \to $$\dfrac{2}{3}$Al2O3(s)?1121.951+0.2155T
    4Ti(s)+O2(g)$ \to $TiO2(s)?941+0.17757T
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Feng Q Y, Guo J L, Li M, et al. Research status and application of electroplating chromium in titanium alloy. <italic>Mater Prot</italic>, 2018, 51(10): 109

    馮秋元, 郭佳林, 李蒙, 等. 鈦合金電鍍鉻研究現狀及應用. 材料保護, 2018, 51(10):109
    [2] Mi G B, Huang X, Cao J X, et al. Frictional ignition of Ti40 fireproof titanium alloys for aero-engine in oxygen-containing media. <italic>Trans Nonferrous Met Soc China</italic>, 2013, 23(8): 2270 doi: 10.1016/S1003-6326(13)62728-4
    [3] Holmes T D, Guilmette R A, Cheng Y S, et al. Aerosol sampling system for collection of capstone depleted uranium particles in a high-energy environment. <italic>Health Phys</italic>, 2009, 96(3): 221 doi: 10.1097/01.HP.0000290610.53663.57
    [4] Girodin D, Dudragne G, Courbon J, et al. Statistical analysis of nonmetallic inclusions for the estimation of rolling contact fatigue range and quality control of bearing steel. <italic>J ASTM Int</italic>, 2006, 3(7): 1
    [5] Plagens O, Lynn D, Castillo M, et al. Combustion products of bulk aluminum rods burning in high-pressure oxygen // <italic>Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres</italic>: 13<italic>th Volume</italic>. <italic>West Conshohocken</italic>, 2012: 233
    [6] Chiffoleau G, Newton B, Holroyd N, et al. Mechanical impact of aluminum alloy gas cylinder pressurized with oxygen. <italic>J ASTM Int</italic>, 2006, 3(5): 1
    [7] Hirsch D, Motto S, Peyton G, et al. Proficiency testing for evaluating aerospace materials test anomalies. <italic>J ASTM Int</italic>, 2006, 3(5): 1
    [8] Benz F J, Stoltzfus J M. Ignition of metals and alloys in gaseous oxygen by frictional heating // Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Second Volume. Washington D C, 1986: 38
    [9] Mi G B, Huang X, Cao J X, et al. Experimental technique of titanium fire in aero-engine. <italic>J Aeron Mater</italic>, 2016, 36(3): 20 doi: 10.11868/j.issn.1005-5053.2016.3.004

    弭光寶, 黃旭, 曹京霞, 等. 航空發動機鈦火試驗技術研究新進展. 航空材料學報, 2016, 36(3):20 doi: 10.11868/j.issn.1005-5053.2016.3.004
    [10] Chen Y N, Yang W Q, Bo A, et al. Underlying burning resistant mechanisms for titanium alloy. <italic>Mater Des</italic>, 2018, 156: 588 doi: 10.1016/j.matdes.2018.07.025
    [11] Chen Y N, Huo Y Z, Song X D, et al. Burn-resistant behavior and mechanism of Ti14 alloy. <italic>Int J Miner Metall Mater</italic>, 2016, 23(2): 215 doi: 10.1007/s12613-016-1229-9
    [12] Mi G B, Huang X, Cao J X, et al. Microstructure characteristics of burning products of Ti–V–Cr fireproof titanium alloy by frictional ignition. <italic>Acta Phys Sinica</italic>, 2016, 65(5): 056103 doi: 10.7498/aps.65.056103

    弭光寶, 黃旭, 曹京霞, 等. 摩擦點火Ti–V–Cr阻燃鈦合金燃燒產物的組織特征. 物理學報, 2016, 65(5):056103 doi: 10.7498/aps.65.056103
    [13] Mi G B, Huang X, Cao J X, et al. Ignition resistance performance and its theoretical analysis of Ti–V–Cr type fireproof titanium alloys. <italic>Acta Metall Sin</italic>, 2014, 50(5): 575

    弭光寶, 黃旭, 曹京霞, 等. Ti–V–Cr系阻燃鈦合金的抗點燃性能及其理論分析. 金屬學報, 2014, 50(5):575
    [14] Ouyang P X, Mi G B, Li P J, et al. Effect of NiCrAl/YSZ/NiCrAl-B.e composite coating on combustion products of high-temperature α+β titanium alloys. <italic>J Mater Eng</italic>, 2019, 47(5): 43 doi: 10.11868/j.issn.1001-4381.2018.000977

    歐陽佩旋, 弭光寶, 李培杰, 等. NiCrAl/YSZ/NiCrAl-B.e復合涂層對α+β型高溫鈦合金燃燒產物的影響. 材料工程, 2019, 47(5):43 doi: 10.11868/j.issn.1001-4381.2018.000977
    [15] Zhang P Z, Xu Z, Zhang G H, et al. Surface plasma chromized burn-resistant titanium alloy. <italic>Surf Coat Technol</italic>, 2007, 201(9-11): 4884 doi: 10.1016/j.surfcoat.2006.07.078
    [16] Zhang L, Yu Y G, Ren X J, et al. Research progress of sustained combustion coatings on titanium substrates. <italic>Titanium Ind Prog</italic>, 2008, 25(6): 6 doi: 10.3969/j.issn.1009-9964.2008.06.003

    張樂, 于月光, 任先京, 等. 鈦合金基體上阻燃涂層的研究進展. 鈦工業進展, 2008, 25(6):6 doi: 10.3969/j.issn.1009-9964.2008.06.003
    [17] Guo C Y, Guo X J, Wang Y H, et al. Process and control research of titanium alloy parts chrome plating. <italic>New Technol New Process</italic>, 2015(10): 96 doi: 10.3969/j.issn.1003-5311.2015.10.028

    郭初陽, 郭喜軍, 王永紅, 等. 鈦合金零件鍍鉻工藝及控制研究. 新技術新工藝, 2015(10):96 doi: 10.3969/j.issn.1003-5311.2015.10.028
    [18] Yang D, Chen Z J, Liu P K, et al. Analysis and prediction of the service life of a mortar tube. <italic>J Gun Launch Control</italic>, 2017, 38(4): 87

    楊雕, 陳志堅, 劉朋科, 等. 某迫擊炮身管壽命分析及預測. 火炮發射與控制學報, 2017, 38(4):87
    [19] American Society for Testing Material, G--04 Committee. ASTM G124—10 Standard Test Method for Determining the Burning Behavior of Metallic Materials in Oxygen-enriched Atmospheres. West Conshohocken: ASTM International, 2010
    [20] Hust J G, Clark A F. A survey of compatibility of materials with high pressure oxygen service. <italic>Cryogenics</italic>, 1973, 13(6): 325 doi: 10.1016/0011-2275(73)90057-X
    [21] Wang H L, Huang J F, Lian Y, et al. Combustion behavior of GH4169 and GH4202 superalloys in oxygen-enriched Atmosphere. <italic>Chin J Eng</italic>, 2016, 38(9): 1288

    王宏亮, 黃進峰, 連勇, 等. 高溫合金GH4169和GH4202在富氧環境中的燃燒行為. 工程科學學報, 2016, 38(9):1288
    [22] Chen H H. Metal Corrosion. Beijing: Beijing Institute of Technology Press, 1995

    陳鴻海. 金屬腐蝕學. 北京: 北京理工大學出版社, 1995
    [23] Ouyang P X, Mi G B, Cao J X, et al. Microstructure characteristics after combustion and fireproof mechanism of TiAl-based alloys. <italic>Mater Today Commun</italic>, 2018, 16: 364 doi: 10.1016/j.mtcomm.2018.07.012
    [24] Wang W X, Xue Z L, Song S Q, et al. Research on smelting vanadium steel by silicothermic reduction direct alloying with V<sub>2</sub>O<sub>5</sub>. <italic>Adv Mater Res</italic>, 2012, 476-478: 164 doi: 10.4028/www.scientific.net/AMR.476-478.164
    [25] Wang B, Tian W. Combustion morphology and mechanism analysis of titanium alloy TC4. <italic>Gas Turbine Exp Res</italic>, 2013, 26(3): 50 doi: 10.3969/j.issn.1672-2620.2013.03.011

    王標, 田偉. TC4鈦合金燃燒形貌和機理分析. 燃氣渦輪試驗與研究, 2013, 26(3):50 doi: 10.3969/j.issn.1672-2620.2013.03.011
    [26] Ge Z M. Phase Diagram of Binary System of Titanium. Beijing: National Defense Industry Press, 1977

    葛志明. 鈦的二元系相圖. 北京: 國防工業出版社, 1977
    [27] Li B, Ding R D, Shen Y F, et al. Preparation of Ti–Cr and Ti–Cu flame-retardant coatings on Ti–6Al–4V using a high-energy mechanical alloying method: A preliminary research. <italic>Mater Des</italic>, 2012, 35: 25 doi: 10.1016/j.matdes.2011.09.017
  • 加載中
圖(14) / 表(5)
計量
  • 文章訪問數:  1181
  • HTML全文瀏覽量:  1221
  • PDF下載量:  39
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-08-10
  • 刊出日期:  2020-09-11

目錄

    /

    返回文章
    返回