<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

生物質多孔碳基復合相變材料制備及性能

陶璋 伍玲梅 張亞飛 高志猛 楊穆

陶璋, 伍玲梅, 張亞飛, 高志猛, 楊穆. 生物質多孔碳基復合相變材料制備及性能[J]. 工程科學學報, 2020, 42(1): 113-119. doi: 10.13374/j.issn2095-9389.2019.08.06.002
引用本文: 陶璋, 伍玲梅, 張亞飛, 高志猛, 楊穆. 生物質多孔碳基復合相變材料制備及性能[J]. 工程科學學報, 2020, 42(1): 113-119. doi: 10.13374/j.issn2095-9389.2019.08.06.002
TAO Zhang, WU Ling-mei, ZHANG Ya-fei, GAO Zhi-meng, YANG Mu. Preparation and properties of biomass porous carbon composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 113-119. doi: 10.13374/j.issn2095-9389.2019.08.06.002
Citation: TAO Zhang, WU Ling-mei, ZHANG Ya-fei, GAO Zhi-meng, YANG Mu. Preparation and properties of biomass porous carbon composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 113-119. doi: 10.13374/j.issn2095-9389.2019.08.06.002

生物質多孔碳基復合相變材料制備及性能

doi: 10.13374/j.issn2095-9389.2019.08.06.002
基金項目: 國家自然科學基金資助項目(51436001,51890893,51802016);中央高校基本科研業務費專項資金資助項目(FRF-TP-19-001A2)
詳細信息
    通訊作者:

    E-mail:yangmu@ustb.edu.cn

  • 中圖分類號: TB34

Preparation and properties of biomass porous carbon composite phase change materials

More Information
  • 摘要: 目前,通過多孔高導熱載體與相變材料復合的方式提升有機復合相變材料綜合性能的方法得到廣泛應用。多孔碳作為負載能力強,導熱性能良好的載體材料成為研究的熱點,但如何綠色、廉價、簡易地制備出該類載體仍是研究的難點。本文以天然生物質材料松木和竹木為碳源,在梯度溫度和氮氣氣氛下熱處理,使生物質材料碳化并進一步發生石墨化轉變,制備出生物質天然孔道結構的多孔高導熱碳基載體材料。采用真空熔融浸漬法將有機相變材料石蠟和多孔碳基載體材料進行高效復合,制備得到生物質多孔碳/石蠟復合相變材料。通過掃描電子顯微鏡(SEM)、紅外光譜儀(FTIR)、同步熱分析儀(TGA)、X射線衍射儀(XRD)、拉曼光譜儀(Raman)、壓汞分析儀(MIP)、差示掃描量熱儀(DSC)、激光導熱儀對載體材料及復合相變材料進行結構表征和性能測試。測試結果表明:生物質多孔碳載體材料孔道結構保存完好,石墨化轉變明顯,保證了有機相變芯材的高效穩定負載。傳熱效率上,相比于純石蠟芯材,以松木和竹木為碳源制得的多孔碳/石蠟復合相變材料熱導率分別提高了100%和216%,達到了0.48 W·m?1·K?1和0.76 W·m?1·K?1。在此基礎上,通過對比松木和竹木為原料制得的復合相變材料的芯材負載量,相變焓值,熱導率的變化,進一步探討了生物質結構對復合相變材料性能的影響機制。

     

  • 圖  1  生物質材料在不同處理階段的微觀形貌。(a) 天然松木;(b) 天然竹木;(c) 松木多孔碳載體;(d) 竹木多孔碳載體;(e) 松木多孔碳/石蠟復合相變材料;(f) 竹木多孔碳/石蠟復合相變材料

    Figure  1.  SEM images of biomass after different treatment: (a) pine; (b) bamboo; (c) PC?1000; (d) BC?1000; (e) PWPC?1000; (f) PWBC?1000

    圖  2  生物質多孔碳載體、復合相變材料及純石蠟紅外譜圖。(a) 松木碳源;(b) 竹木碳源

    Figure  2.  FTIR spectra of pure paraffin, biomass porous carbon and composite phase change materials: (a) pine carbon; (b) bamboo carbon

    圖  3  生物質多孔碳載體、復合相變材料及純石蠟X射線衍射圖譜。(a)松木碳源;(b)竹木碳源

    Figure  3.  XRD patterns of pure paraffin, biomass porous carbon and composite phase change materials: (a) pine carbon; (b) bamboo carbon

    圖  4  生物質多孔碳載體的拉曼譜圖

    Figure  4.  Raman spectra of PC?1000 and BC?1000

    圖  5  天然松木、竹木及生物質多孔碳載體孔徑分布圖

    Figure  5.  Pore size distribution of carbon source and biomass porous carbon

    圖  6  生物質多孔碳載體、復合相變材料及純石蠟熱重曲線。(a)松木碳源;(b)竹木碳源

    Figure  6.  TGA curves of pure paraffin, biomass porous carbon and composite phase change materials: (a) pine carbon; (b) bamboo carbon

    圖  7  差示掃描量熱曲線圖。(a)純石蠟;(b)生物質多孔碳載體

    Figure  7.  DSC curves: (a) paraffin; (b) PWPC?1000 and PWBC?1000

    圖  8  純石蠟、復合相變材料及生物質原料熱導率對比

    Figure  8.  Thermal conductivity of paraffin, phase change materials and biomass raw materials

    表  1  天然松木、竹木及生物質多孔碳載體孔結構參數

    Table  1.   Structural parameters of carbon source and biomass porous carbon

    樣品比表面積/(m2·g?1)孔隙率/%孔體積/(mL·g?1)
    BC?100051.866.21.4
    PC?100047.378.73.5
    竹木27.853.40.8
    松木0.984.33.8
    下載: 導出CSV

    表  2  復合相變材料及石蠟在熔化過程中參數

    Table  2.   DSC data of paraffin and phase change materials

    樣品負載率(質量分數)/%相變起始溫度/℃相變溫度峰值/℃相變結束溫度/℃吸收焓/(J·g?1)
    PC?100070.547.5356.0660.87135.07
    BC?100051.948.5755.9561.9182.63
    石蠟10056.1958.2861.96213.56
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Kenisarin M M, Kenisarina K M. Form-stable phase change materials for thermal energy storage. Renewable Sustainable Energy Rev, 2012, 16(4): 1999 doi: 10.1016/j.rser.2012.01.015
    [2] Zhong L M, Yang M, Luan Y, et al. Preparation and properties of paraffin/SiO2 composite phase change materials. Chin J Eng, 2015, 37(7): 936

    鐘麗敏, 楊穆, 欒奕, 等. 石蠟/二氧化硅復合相變材料的制備及其性能. 工程科學學報, 2015, 37(7):936
    [3] Gao X T, Zhao A M. Dynamic study on phase-change heat of TRIP effect during deformation. Chin J Eng, 2018, 40(1): 59

    高緒濤, 趙愛民. 形變過程中TRIP效應的相變熱動態研究. 工程科學學報, 2018, 40(1):59
    [4] Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci, 2014, 65: 67 doi: 10.1016/j.pmatsci.2014.03.005
    [5] Xiao X, Zhang P, Li M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int J Therm Sci, 2014, 81: 94 doi: 10.1016/j.ijthermalsci.2014.03.006
    [6] Xiao X, Zhang P, Li M. Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy, 2013, 112: 1357 doi: 10.1016/j.apenergy.2013.04.050
    [7] Mehrali M, Latibari S T, Mehrali M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manage, 2013, 67: 275 doi: 10.1016/j.enconman.2012.11.023
    [8] Shui L, Zhang K, Yu H. Effect of graphene content on the microstructure and mechanical properties of graphene-reinforced Al?15Si?4Cu?Mg matrix composites. Chin J Eng, 2019, 41(9): 1162

    水麗, 張凱, 于宏. 石墨烯含量對石墨烯/Al?15Si?4Cu?Mg復合材料微觀組織和力學性能的影響. 工程科學學報, 2019, 41(9):1162
    [9] Tang J, Yang M, Dong W J, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity. RSC Adv, 2016, 6(46): 40106 doi: 10.1039/C6RA04059D
    [10] Huo Q S, Jin J Q, Wang X Q, et al. Tensile strain synergistic of carbon nanotube buckypaper composites. Chin J Eng, 2018, 40(6): 714

    霍慶生, 金嘉琦, 王曉強, 等. 碳納米紙復合材料的拉伸應變協同性. 工程科學學報, 2018, 40(6):714
    [11] Peng X W, Zhang L, Chen Z X, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv Mater, 2019, 31(16): 1900341 doi: 10.1002/adma.201900341
    [12] De S, Balu A M, van der Waal J C, et al. Biomass-derived porous carbon materials: Synthesis and catalytic applications. Chem Cat Chem, 2015, 7(11): 1608
    [13] Yang Z W, Deng Y, Li J H. Preparation of porous carbonized woods impregnated with lauric acid as shape-stable composite phase change materials. Appl Therm Eng, 2019, 150: 967 doi: 10.1016/j.applthermaleng.2019.01.063
    [14] Atinafu D G, Dong W J, Wang J J, et al. Synthesis and characterization of paraffin/metal organic gel derived porous carbon/boron nitride composite phase change materials for thermal energy storage. Eur J Inorg Chem, 2018, 2018(48): 5167 doi: 10.1002/ejic.201800811
    [15] Li Z T, Wu Y X, Zhuang B S, et al. Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity. Appl Energy, 2017, 206: 1147 doi: 10.1016/j.apenergy.2017.10.046
    [16] Mun S P, Cai Z Y, Zhang J L. Preparation of Fe-cored carbon nanomaterials from mountain pine beetle-killed pine wood. Mater Lett, 2015, 142: 45 doi: 10.1016/j.matlet.2014.11.053
    [17] Mun S P, Cai Z Y, Watanabe F, et al. Thermal conversion of pine wood char to carbon nanomaterials in the presence of iron nanoparticles. Forest Prod J, 2012, 62(6): 462 doi: 10.13073/FPJ-D-12-00028.1
    [18] Yang H Y, Wang Y Z, Yu Q Q, et al. Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage. Appl Energy, 2018, 212: 455 doi: 10.1016/j.apenergy.2017.12.006
    [19] Nabais J M V, Carrott P J M, Carrott M M L R, et al. Preparation and modification of activated carbon fibres by microwave heating. Carbon, 2004, 42(7): 1315 doi: 10.1016/j.carbon.2004.01.033
    [20] Ferrari A C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 2007, 143(1-2): 47 doi: 10.1016/j.ssc.2007.03.052
    [21] Yang H Y, Wang Y Z, Yu Q Q, et al. Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage. Energy, 2018, 159: 929 doi: 10.1016/j.energy.2018.06.207
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  1657
  • HTML全文瀏覽量:  1062
  • PDF下載量:  95
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-08-06
  • 刊出日期:  2020-01-01

目錄

    /

    返回文章
    返回