<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

茄子衍生多孔碳負載聚乙二醇相變復合材料

李亞瓊 李洋 席作帥 楊虹 黃秀兵

李亞瓊, 李洋, 席作帥, 楊虹, 黃秀兵. 茄子衍生多孔碳負載聚乙二醇相變復合材料[J]. 工程科學學報, 2020, 42(1): 106-112. doi: 10.13374/j.issn2095-9389.2019.08.06.001
引用本文: 李亞瓊, 李洋, 席作帥, 楊虹, 黃秀兵. 茄子衍生多孔碳負載聚乙二醇相變復合材料[J]. 工程科學學報, 2020, 42(1): 106-112. doi: 10.13374/j.issn2095-9389.2019.08.06.001
LI Ya-qiong, LI Yang, XI Zuo-shuai, YANG Hong, HUANG Xiu-bing. Eggplant-derived porous carbon encapsulating polyethylene glycol as phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 106-112. doi: 10.13374/j.issn2095-9389.2019.08.06.001
Citation: LI Ya-qiong, LI Yang, XI Zuo-shuai, YANG Hong, HUANG Xiu-bing. Eggplant-derived porous carbon encapsulating polyethylene glycol as phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 106-112. doi: 10.13374/j.issn2095-9389.2019.08.06.001

茄子衍生多孔碳負載聚乙二醇相變復合材料

doi: 10.13374/j.issn2095-9389.2019.08.06.001
基金項目: 國家自然科學基金資助項目(51436001,51890893);中央高校基本科研業務費資助項目(FRF-TP-19-003A2)
詳細信息
    通訊作者:

    E-mail:xiubinghuang@ustb.edu.cn

  • 中圖分類號: TB332

Eggplant-derived porous carbon encapsulating polyethylene glycol as phase change materials

More Information
  • 摘要: 以茄子為原材料,通過水熱處理–后續熱解法及直接熱解法分別制備出兩種不同的茄子衍生多孔碳材料(HBPC和BPC)。以茄子衍生多孔碳材料為載體,采用真空浸漬法負載相變芯材聚乙二醇(PEG2000),制備出聚乙二醇/茄子衍生多孔碳材料復合相變材料。通過掃描電鏡、拉曼光譜、壓汞法、傅里葉變換紅外光譜分析、X射線衍射儀、熱重分析儀和差示掃描量熱儀對其進行結構表征及性能測試。結果表明,通過直接熱解法制得的茄子衍生多孔碳材料為載體的聚乙二醇/茄子衍生多孔碳材料復合相變材料具有更好的相變儲熱效果,負載聚乙二醇的質量分數高達90.60%,熔融潛熱為133.98 J·g?1,達到了較好的定形相變效果及良好的循環穩定性。

     

  • 圖  1  多孔碳載體材料的掃描電鏡圖片。(a)水熱處理的生物多孔碳;(b)生物多孔碳

    Figure  1.  SEM images of porous carbon materials: (a) HBPC; (b) BPC

    圖  2  多孔碳載體材料的拉曼光譜. (a) 水熱處理的生物多孔碳;(b) 生物多孔碳

    Figure  2.  Raman spectra of porous carbon materials: (a) HBPC; (b) BPCc

    圖  3  水熱處理的生物多孔碳和生物多孔碳的孔徑分析. (a,c) 孔徑分布;(b,d) 累積孔隙面積分布

    Figure  3.  Pore size of HBPC and BPC: (a,c) pore size distribution; (b,d) cumulative pore area distribution

    圖  4  紅外光譜分析. (a) 聚乙二醇,水熱處理的生物多孔碳和聚乙二醇/水熱處理的生物多孔碳和;(b) 聚乙二醇,生物多孔碳和聚乙二醇/生物多孔碳

    Figure  4.  FT-IR spectrum of PCMs: (a) PEG, HBPC, and PEG/HBPC; (b) PEG, BPC, and PEG/BPC

    圖  5  X射線光譜衍射圖. (a) 聚乙二醇,PEG/HBPC和水熱處理的生物多孔碳;(b) 聚乙二醇,PEG/BPC和生物多孔碳

    Figure  5.  XRD patterns: (a) PEG, PEG/HBPC, HBPC; (b) PEG, PEG/BPC, BPC

    圖  6  聚乙二醇、聚乙二醇/水熱處理的生物多孔碳和聚乙二醇/生物多孔碳的熱重曲線

    Figure  6.  TG curves of PEG, PEG/HBPC, and PEG/BPC

    圖  7  聚乙二醇,聚乙二醇/水熱處理的生物多孔碳和聚乙二醇/生物多孔碳的差示掃描量熱曲線

    Figure  7.  DSC curves of PEG, PEG/HBPC and PEG/BPC

    圖  8  PEG/BPC的循環性能測試. (a) 50次循環前后的紅外譜圖;(b) 50次循環前后的差示掃描量熱圖

    Figure  8.  Thermal reliability tests of PEG/BPC: (a) FT-IR spectrum before and after 50 cycles; (b) DSC curves before and after 50 cycles

    表  1  聚乙二醇、聚乙二醇/水熱處理的生物多孔碳和聚乙二醇/生物多孔碳復合相變材料的熱性能

    Table  1.   Thermal properties of PEG, PEG/HBPC, and PEG/BPC composite phase change materials

    相變材料負載量(質量分數)/%TM/℃HM/(J·g?1TS/℃HS/(J·g?1
    聚乙二醇10055.87164.9217.65149.34
    PEG/HBPC84.6054.71121.7322.76114.00
    PEG/BPC90.6057.90133.9826.32128.32
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Deng J, Li M M, Wang Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem, 2016, 18(18): 4824 doi: 10.1039/C6GC01172A
    [2] Huang X Y, Xia W, Zou R Q. Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage. J Mater Chem A, 2014, 2(47): 19963 doi: 10.1039/C4TA04605F
    [3] Saman W, Bruno F, Halawa E. Thermal performance of PCM thermal storage unit for a roof integrated solar heating system. Sol Energy, 2005, 78(2): 341 doi: 10.1016/j.solener.2004.08.017
    [4] Cabeza L F, Castell A, Barreneche C, et al. Materials used as PCM in thermal energy storage in buildings: a review. Renewable Sustainable Energy Rev, 2011, 15(3): 1675 doi: 10.1016/j.rser.2010.11.018
    [5] Parameshwaran R, Kalaiselvam S. Energy conservative air conditioning system using silver nano-based PCM thermal storage for modern buildings. Energy Build, 2014, 69: 202 doi: 10.1016/j.enbuild.2013.09.052
    [6] Sánchez P, Sánchez-Fernandez M V, Romero A, et al. Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim Acta, 2010, 498(1-2): 16 doi: 10.1016/j.tca.2009.09.005
    [7] Nejman A, Cie?lak M, Gajdzicki B, et al. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric. Thermochim Acta, 2014, 589: 158 doi: 10.1016/j.tca.2014.05.037
    [8] Beyhan B, Paksoy H, Da?gan Y. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Convers Manage, 2013, 74: 446 doi: 10.1016/j.enconman.2013.06.047
    [9] Sundararajan S, Samui A B, Kulkarni P S. Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J Mater Chem A, 2017, 5(35): 18379 doi: 10.1039/C7TA04968D
    [10] Min X, Fang M H, Huang Z H, et al. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Sci Rep, 2015, 5: 12964 doi: 10.1038/srep12964
    [11] Andriamitantsoa R S, Dong W J, Gao H Y, et al. PEG encapsulated by porous triamide-linked polymers as support for solid-liquid phase change materials for energy storage. Chem Phys Lett, 2017, 671: 165 doi: 10.1016/j.cplett.2017.01.028
    [12] Feng Y H, Wei R Z, Huang Z, et al. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials. Phys Chem Chem Phys, 2018, 20(11): 7772 doi: 10.1039/C7CP08557E
    [13] Zhou M, Lin T Q, Huang F Q, et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv Funct Mater, 2013, 23(18): 2263 doi: 10.1002/adfm.201202638
    [14] Yang J, Tang L S, Bao R Y, et al. Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol Energy Mater Sol Cells, 2018, 174: 56 doi: 10.1016/j.solmat.2017.08.025
    [15] Qi G Q, Yang J, Bao R Y, et al. Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon, 2015, 88: 196 doi: 10.1016/j.carbon.2015.03.009
    [16] Yang J, Li X F, Han S, et al. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. J Mater Chem A, 2016, 4(46): 18067 doi: 10.1039/C6TA07869A
    [17] Shang Y, Zhang D. Preparation and thermal properties of graphene oxide-microencapsulated phase change materials. Nanoscale Microscale Thermophys Eng, 2016, 20(3-4): 145
    [18] Wei Y H, Li J J, Sun F R, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents. Green Chem, 2018, 20(8): 1858 doi: 10.1039/C7GC03595K
    [19] Li Y Q, Samad Y A, Polychronopoulou K, et al. From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials. J Mater Chem A, 2014, 2(21): 7759 doi: 10.1039/C4TA00839A
    [20] Chen X, Gao H Y, Xing L W, et al. Nanoconfinement effects of N-doped hierarchical carbon on thermal behaviors of organic phase change materials. Energy Storage Mater, 2019, 18: 280 doi: 10.1016/j.ensm.2018.08.024
    [21] Feng L L, Song P, Yan S C, et al. The shape-stabilized phase change materials composed of polyethylene glycol and graphitic carbon nitride matrices. Thermochim Acta, 2015, 612: 19 doi: 10.1016/j.tca.2015.05.001
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數:  1475
  • HTML全文瀏覽量:  1175
  • PDF下載量:  64
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-08-06
  • 刊出日期:  2020-01-01

目錄

    /

    返回文章
    返回