<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

交流干擾下X100管線鋼及其熱影響區在庫爾勒土壤模擬液中的腐蝕行為

楊永 王新華 陳迎春 位凱玲

楊永, 王新華, 陳迎春, 位凱玲. 交流干擾下X100管線鋼及其熱影響區在庫爾勒土壤模擬液中的腐蝕行為[J]. 工程科學學報, 2020, 42(7): 894-901. doi: 10.13374/j.issn2095-9389.2019.07.21.002
引用本文: 楊永, 王新華, 陳迎春, 位凱玲. 交流干擾下X100管線鋼及其熱影響區在庫爾勒土壤模擬液中的腐蝕行為[J]. 工程科學學報, 2020, 42(7): 894-901. doi: 10.13374/j.issn2095-9389.2019.07.21.002
YANG Yong, WANG Xin-hua, CHEN Ying-chun, WEI Kai-ling. Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference[J]. Chinese Journal of Engineering, 2020, 42(7): 894-901. doi: 10.13374/j.issn2095-9389.2019.07.21.002
Citation: YANG Yong, WANG Xin-hua, CHEN Ying-chun, WEI Kai-ling. Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference[J]. Chinese Journal of Engineering, 2020, 42(7): 894-901. doi: 10.13374/j.issn2095-9389.2019.07.21.002

交流干擾下X100管線鋼及其熱影響區在庫爾勒土壤模擬液中的腐蝕行為

doi: 10.13374/j.issn2095-9389.2019.07.21.002
基金項目: 國家自然科學基金資助項目(51471011)
詳細信息
    通訊作者:

    E-mail:wxhemma2005@163.com

  • 中圖分類號: TG174.3

Corrosion behavior of X100 pipeline steel and its heat-affected zones in simulated Korla soil solution under alternating current interference

More Information
  • 摘要: 通過Gleeble熱模擬實驗機模擬了X100管線鋼的粗晶熱影響區(CGHAZ)及再熱臨界粗晶熱影響區(ICCGHAZ)微觀組織。采用電化學測試、浸泡實驗及表面分析技術研究了交流干擾下X100管線鋼母材、CGHAZ及ICCGHAZ在庫爾勒土壤溶液中的腐蝕行為。結果表明:交流干擾下X100管線鋼母材、CGHAZ及ICCGHAZ都表現為活性溶解,平均腐蝕速率隨交流電流密度的增大而增加。交流干擾造成的極化電位振蕩幅值及微觀組織對X100管線鋼母材、CGHAZ及ICCGHAZ的平均腐蝕速率和腐蝕形貌有著重要影響。在5 mA·cm?2交流電流密度干擾下,母材的腐蝕電位最負、平均腐蝕速率最大,ICCGHAZ的腐蝕電位最正、平均腐蝕速率最小,CGHAZ的腐蝕電位及平均腐蝕速率都居中;在20 mA·cm?2及50 mA·cm?2交流電流密度干擾下,ICCGHAZ腐蝕電位最負、平均腐蝕速率最大,母材的腐蝕電位最正、平均腐蝕速率最小,CGHAZ的腐蝕電位及平均腐蝕速率都仍居中。在20 mA·cm?2交流電流密度交流干擾下,X100管線鋼發生局部腐蝕,CGHAZ、ICCGHAZ發生明顯的晶界腐蝕,GCHAZ晶界腐蝕形貌呈縫隙狀、ICCGHAZ晶界腐蝕形貌為連續孔洞。

     

  • 圖  1  Gleeble熱模擬實驗熱循環溫度曲線

    Figure  1.  Cycle temperature curves of thermal simulation by Gleeble

    圖  2  研究用試樣示意圖

    Figure  2.  Schematic diagram of the research sample

    圖  3  電化學實驗裝置

    Figure  3.  Schematic diagram of experimental setup for electrochemical testing

    圖  4  X100管線鋼顯微組織。(a)粗晶熱影響區;(b)臨界再熱粗晶熱影響區;(c)母材

    Figure  4.  Optical microstructure: (a) CGHAZ; (b) ICCGHAZ; (c) base steel

    圖  5  X100管線鋼母材和熱影響區在庫爾勒土壤模擬液中的腐蝕電位。(a)1 Hz頻率測得;(b)在交流電流密度為5 mA·cm?2時2000 Hz頻率測得;(c)在交流電流密度為20 mA·cm?2時2000 Hz頻率測得;(d)在交流電流密度為50 mA·cm?2時2000 Hz頻率測得

    Figure  5.  Corrosion potentials of the samples in simulated Korla soil solution: (a) measured by 1 Hz frequency; (b) measured by 2000 Hz under AC density of 5 mA·cm?2; (c) measured by 2000 Hz under AC density of 20 mA·cm?2; (d) measured by 2000 Hz under AC density of 50 mA·cm?2

    圖  6  X100管線鋼母材和熱影響區在庫爾勒土壤模擬液中極化曲線。(a)交流電流密度為5 mA·cm?2;(b)交流電流密度為20 mA·cm?2;(c)交流電流密度為50 mA·cm?2

    Figure  6.  Polarization curves of the samples in simulated Korla soil solution: (a) AC density of 5 mA·cm?2; (b) AC density of 20 mA·cm?2; (c) AC density of 50 mA·cm?2

    圖  7  X100鋼母材、CGHAZ和ICCGHAZ在20 mA·cm?2交流干擾下的腐蝕速率

    Figure  7.  Corrosion rates of X100 base steel, CGHAZ, ICCGHAZ under AC current densities of 20 mA·cm?2

    圖  8  試樣表面腐蝕形貌SEM圖。(a)CGHAZ鄰近母材;(b)ICCGHAZ鄰近母材;(c)單獨母材;(d)CGHAZ;(e)ICCGHAZ

    Figure  8.  SEM surface micrographs: (a)base steel adjacent to CGHAZ; (b) base steel adjacent to ICCGHAZ; (c) base steel; (d) CGHAZ; (e)ICCGHAZ

    圖  9  試樣表面腐蝕形貌SEM圖。(a) 腐蝕較輕的CGHAZ;(b)腐蝕較輕的ICCGHAZ;(c)腐蝕較輕的母材;(d)腐蝕較嚴重的CGHAZ;(e)腐蝕較嚴重的ICCGHAZ;(f)腐蝕較嚴重的母材

    Figure  9.  SEM surface micrographs: (a) CGHAZ with slight corrosion; (b) ICCGHAZ with slight corrosion; (c) base steel with slight corrosion; (d) CGHAZ with serious corrosion; (e) ICCGHAZ with serious corrosion; (f) base steel with serious corrosion

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Du W, Li H L, Wang H T, et al. Research status of high-performance oil and gas pipelines in China and abroad. Oil Gas Storage Transp, 2016, 35(6): 577

    杜偉, 李鶴林, 王海濤, 等. 國內外高性能油氣輸送管的研發現狀. 油氣儲運, 2016, 35(6):577
    [2] Witek M. Possibilities of using X80, X100, X120 high-strength steels for onshore gas transmission pipelines. J Nat Gas Sci Eng, 2015, 27: 374 doi: 10.1016/j.jngse.2015.08.074
    [3] Maes M A, Dann M, Salama M M. Influence of grade on the reliability of corroding pipelines. Reliab Eng Syst Saf, 2008, 93(3): 447 doi: 10.1016/j.ress.2006.12.009
    [4] Liu C H, Liu W, Lu M X. Comparative study on corrosion behavior of X60 steel and its welding heat-affected zone. Corros Sci Prot Technol, 2008, 20(3): 206

    劉成虎, 柳偉, 路民旭. X60鋼及其焊接熱影響區的腐蝕行為對比研究. 中國腐蝕與防護技術, 2008, 20(3):206
    [5] Fan Z, Liu J Y, Li S L, et al. Microstructure and seawater corrosion to welding joint of X70 pipeline steel. J Southwest Petrol Univ Sci Technol Ed, 2009, 31(5): 171

    范舟, 劉建儀, 李士倫, 等. X70管線鋼焊接接頭組織及其海水腐蝕規律. 西南石油大學學報: 自然科學版, 2009, 31(5):171
    [6] Mohammadi F, Eliyan F F, Alfantazi A. Corrosion of simulated weld HAZ of API X-80 pipeline steel. Corros Sci, 2012, 63: 323 doi: 10.1016/j.corsci.2012.06.014
    [7] Zhao W, Zou Y, Zou Z D, et al. The corrosion characterization in simulated heat-affected zones of X80 pipeline steel in near-neutral solution. Int J Electrochem Sci, 2015, 10(11): 9725
    [8] Shi C W, Zhang Y B, Liu P, et al. Effects of second thermal cycles on microstructure and CO2 corrosion behavior of X80 pipeline steel. Int J Electrochem Sci, 2018, 13(3): 2412
    [9] Zhang M, Li L, Cheng K K, et al. Corrosion behavior of X100 pipeline steel welded joint in acidic environment. Ordnance Mater Sci Eng, 2018, 41(6): 1

    張敏, 李樂, 程康康, 等. X100管線鋼焊接接頭在酸性環境中的腐蝕行為分析. 兵器材料科學與工程, 2018, 41(6):1
    [10] Eliyan F F, Alfantazi A. Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃–an electrochemical evaluation. Corros Sci, 2013, 74: 297 doi: 10.1016/j.corsci.2013.05.003
    [11] Eliyan F F, Icre F, Alfantazi A. Passivation of HAZs of API‐X100 pipeline steel in bicarbonate‐carbonate solutions at 298 K. Mater Corros, 2014, 65(12): 1162 doi: 10.1002/maco.201206985
    [12] Papadakis G A. Major hazard pipelines: a comparative study of onshore transmission accidents. J Loss Prev Process Ind, 1999, 12(1): 91 doi: 10.1016/S0950-4230(98)00048-5
    [13] Mustapha A, Charles E A, Hardie D. Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel. Corros Sci, 2012, 54: 5 doi: 10.1016/j.corsci.2011.08.030
    [14] Kulman F E. Effects of alternating currents in causing corrosion. Corrosion, 1961, 17(3): 34 doi: 10.5006/0010-9312-17.3.34
    [15] Gummow R A, Wakelin R G, Segall S M. AC corrosion― ―a new threat to pipeline integrity? // 1996 1st International Pipeline Conference. Calgary, 1996: 443
    [16] Fu Y Q, Wang X T, Chen S L. Stray current detection and treatment for buried natural gas pipeline of Nanlang segment. Surf Technol, 2016, 45(2): 22

    符耀慶, 王秀通, 陳勝利. 南朗段埋地天然氣管道雜散電流檢測與治理. 表面技術, 2016, 45(2):22
    [17] Hanson H R, Smart J. AC corrosion on a pipeline located in an HVAC utility corridor // Corrosion 2004. New Orleans, 2004: NACE-04209
    [18] Liang P, Du C W, Li X G. Simulating and accelerating properties of Kuerle soil simulated solution. J Chin Soc Corros Prot, 2011, 31(2): 97

    梁平, 杜翠薇, 李曉剛. 庫爾勒土壤模擬溶液的模擬性和加速性研究. 中國腐蝕與防護學報, 2011, 31(2):97
    [19] Goidanich S, Lazzari L, Ormellese M. AC corrosion. Part 2: parameters influencing corrosion rate. Corros Sci, 2010, 52(3): 916 doi: 10.1016/j.corsci.2009.11.012
    [20] Lazzari L, Goidanich S, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper // CORROSION 2005. Houston, Texas, 2005: NACE-05189
    [21] Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday. J Chin Soc Corros Prot, 2017, 37(4): 341 doi: 10.11902/1005.4537.2017.118

    王曉霖, 閆茂成, 舒韻, 等. 破損涂層下管線鋼的交流電干擾腐蝕行為. 中國腐蝕與防護學報, 2017, 37(4):341 doi: 10.11902/1005.4537.2017.118
    [22] Wang X H, Song X T, Chen Y C, et al. Corrosion behavior of X70 and X80 pipeline steels in simulated soil solution. Int J Electrochem Sci, 2018, 13(7): 6436
    [23] Wang X H, Tang X H, Wang L W, et al. Synergistic effect of stray current and stress on corrosion of API X65 steel. J Nat Gas Sci Eng, 2014, 21: 474 doi: 10.1016/j.jngse.2014.09.007
    [24] Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline. J Chin Soc Corros Prot, 2013, 33(4): 293

    王新華, 楊國勇, 黃海, 等. 埋地鋼質管道交流雜散電流腐蝕規律研究. 中國腐蝕與防護學報, 2013, 33(4):293
    [25] Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment. Acta Metall Sin, 2017, 53(5): 575 doi: 10.11900/0412.1961.2016.00500

    萬紅霞, 宋東東, 劉智勇, 等. 交流電對X80鋼在近中性環境中腐蝕行為的影響. 金屬學報, 2017, 53(5):575 doi: 10.11900/0412.1961.2016.00500
    [26] Zhu M, Du C W, Li X G, et al. Effects of alternating current (AC) frequency on corrosion behavior of X80 pipeline steel in a simulated acid soil solution. J Chin Soc Corros Prot, 2014, 34(3): 225 doi: 10.11902/1005.4537.2013.127

    朱敏, 杜翠薇, 李曉剛, 等. 交流電頻率對X80管線鋼在酸性土壤模擬溶液中腐蝕行為的影響. 中國腐蝕與防護學報, 2014, 34(3):225 doi: 10.11902/1005.4537.2013.127
    [27] Li X D, Li X, Wang S X, et al. Influence of cooling rate on microstructure and impact properties of ICCGHAZ of X100 pipeline steel during the second pass thermal cycle. Heat Treat Met, 2017, 42(9): 66

    李學達, 李霞, 王世新, 等. 第二道次焊接熱循環冷卻速度對X100管線鋼臨界再熱粗晶區組織及沖擊性能的影響. 金屬熱處理, 2017, 42(9):66
    [28] Lalvani S B, Lin X. A revised model for predicting corrosion of materials induced by alternating voltages. Corros Sci, 1996, 38(10): 1709 doi: 10.1016/S0010-938X(96)00065-0
    [29] Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions. Corros Sci, 2014, 85: 304 doi: 10.1016/j.corsci.2014.04.030
    [30] Li M C, Cheng Y F. Mechanistic investigation of hydrogen-enhanced anodic dissolution of X-70 pipe steel and its implication on near-neutral pH SCC of pipelines. Electrochim Acta, 2007, 52(28): 8111 doi: 10.1016/j.electacta.2007.07.015
  • 加載中
圖(9)
計量
  • 文章訪問數:  1219
  • HTML全文瀏覽量:  924
  • PDF下載量:  24
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-21
  • 刊出日期:  2020-07-01

目錄

    /

    返回文章
    返回