<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

RH精煉過程中吹氧量對IF鋼潔凈度的影響

潘明 于會香 季晨曦 劉延強 冀云卿

潘明, 于會香, 季晨曦, 劉延強, 冀云卿. RH精煉過程中吹氧量對IF鋼潔凈度的影響[J]. 工程科學學報, 2020, 42(7): 846-853. doi: 10.13374/j.issn2095-9389.2019.07.19.002
引用本文: 潘明, 于會香, 季晨曦, 劉延強, 冀云卿. RH精煉過程中吹氧量對IF鋼潔凈度的影響[J]. 工程科學學報, 2020, 42(7): 846-853. doi: 10.13374/j.issn2095-9389.2019.07.19.002
PAN Ming, YU Hui-xiang, JI Chen-xi, LIU Yan-qiang, JI Yun-qing. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel[J]. Chinese Journal of Engineering, 2020, 42(7): 846-853. doi: 10.13374/j.issn2095-9389.2019.07.19.002
Citation: PAN Ming, YU Hui-xiang, JI Chen-xi, LIU Yan-qiang, JI Yun-qing. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel[J]. Chinese Journal of Engineering, 2020, 42(7): 846-853. doi: 10.13374/j.issn2095-9389.2019.07.19.002

RH精煉過程中吹氧量對IF鋼潔凈度的影響

doi: 10.13374/j.issn2095-9389.2019.07.19.002
基金項目: 國家重點研發計劃資助項目(2017YFB0304000, 2017YFB0304001)
詳細信息
    通訊作者:

    E-mail: yuhuixiang@ustb.edu.cn

  • 中圖分類號: TF769.9

Effect of oxygen blowing during RH treatment on the cleanliness of IF steel

More Information
  • 摘要: 無間隙原子鋼(IF鋼)主要用于汽車、家電等行業,除需要極低的C、N含量外,對最終產品的表面質量也有嚴格要求。鋼中O含量和夾雜物對產品的表面質量影響很大。快速降低鋼中C含量、同時保證鋼的高潔凈度是非常重要的。為此,通過在Ruhrstahl Hereaeus(RH)精煉?連鑄過程密集取樣,采用ASPEX掃描電鏡詳細研究了RH吹氧強制脫碳工藝下吹氧量對IF鋼潔凈度的影響。結果表明,本實驗條件下,吹氧量對精煉?連鑄過程中夾雜物的類型和形貌沒有影響。吹氧量對RH精煉前期(加Al后4 min內)鋼液潔凈度影響較大,而對后期生產過程中鋼液的潔凈度影響不大;精煉前期,吹氧量高,鋼液中總氧(T.O)含量和夾雜物的量增加。簇群狀夾雜物主要出現在RH破空之前,真空精煉結束后鋼液中很難發現簇群狀夾雜物。中間包鋼液潔凈度與RH吹氧量相關性不大,而與加Al脫氧前鋼液中O含量相關性很大,加Al脫氧前鋼液中O含量高,中間包鋼液潔凈度差;為提高中間包鋼液的潔凈度,應盡量減少加Al脫氧前鋼液中的O含量。隨著生產的進行,鋼液中T.O含量、夾雜物的量呈下降趨勢,潔凈度逐漸提高。

     

  • 圖  1  取樣明細

    Figure  1.  Sampling during process

    圖  2  試樣加工圖。(a)取樣器試樣;(b)鑄坯試樣

    Figure  2.  Schematic of sample machining: (a) sample by sampler; (b) sample from slab

    圖  3  Al2O3夾雜物典型形貌。(a)樹枝類簇群;(b)珊瑚狀簇群;(c)棒狀;(d)球形;(e)塊狀

    Figure  3.  Morphology of typical Al2O3 inclusions: (a) dendritic cluster; (b) coral cluster; (c) bar-like; (d) spherical; (e) bulk

    圖  4  Al?Ti?O復合夾雜物典型形貌及面掃。(a)類球狀;(b)不規則狀

    Figure  4.  Morphology of typical Al?Ti?O complex inclusions and surface scanning: (a) spherical; (b) irregular shape

    圖  5  不同RH吹氧量下鋼中夾雜物的尺寸分布。(a)35 m3;(b)160 m3;(c)295 m3

    Figure  5.  Size distribution of inclusions in different oxygen blowing in RH: (a) 35 m3; (b) 160 m3; (c) 295 m3

    圖  6  不同RH吹氧量下T.O含量變化

    Figure  6.  Change in the content of T.O in different oxygen blowing in RH

    圖  7  不同RH吹氧量下N含量變化

    Figure  7.  Change in the content of N in different oxygen blowing in RH

    圖  8  不同RH吹氧量下夾雜物數量密度變化

    Figure  8.  Change in the density of inclusions in different oxygen blowing in RH

    圖  9  不同RH吹氧量下夾雜物面積比變化

    Figure  9.  Change in the area ratio of inclusions in different oxygen blowing in RH

    圖  10  鋼包不同深度夾雜物上浮時間

    Figure  10.  Removal time of inclusions in different depths of ladle

    圖  11  不同RH吹氧量與簇群狀夾雜物面積比關系

    Figure  11.  Relation between different oxygen blowing in RH and area ratio of cluster inclusions

    圖  12  中包內夾雜物面積比與RH吹氧量關系

    Figure  12.  Relation between area ratio of inclusions in the tundish and the amount of oxygen blowing

    圖  13  中包內夾雜物面積比與加Al脫氧前鋼液中氧含量關系

    Figure  13.  Relation between area ratio of inclusions in the tundish and the content of oxygen in molten steel before Al deoxygenation

    表  1  RH吹氧情況

    Table  1.   Oxygen blowing during RH treatment

    Heat numberOxygen blowing/m3Decarburization/
    %
    Oxygen content before deoxidation/%
    1350.01850.0365
    22150.03020.0362
    32200.02620.0350
    42350.02520.0310
    52950.04180.0291
    61600.03410.0388
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1

    王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1
    [2] Matsuura H, Wang C, Wen G H, et al. The transient stages of inclusion evolution during Al and/or Ti additions to molten iron. ISIJ Int, 2007, 47(9): 1265 doi: 10.2355/isijinternational.47.1265
    [3] Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel. ISIJ Int, 2004, 44(10): 1653 doi: 10.2355/isijinternational.44.1653
    [4] Wang M, Bao Y P, Yang Q. Effect of ferro-titanium alloying process on steel cleanness. J Univ Sci Technol Beijing, 2013, 35(6): 725

    王敏, 包燕平, 楊荃. 鈦合金化過程對鋼液潔凈度的影響. 北京科技大學學報, 2013, 35(6):725
    [5] Qin Y M, Wang X H, Li L P, et al. Effect of oxidizing slag on cleanliness of IF steel during ladle holding process. Steel Res Int, 2015, 86(9): 1037 doi: 10.1002/srin.201400349
    [6] Cui H, Chen B, Wang M, et al. Cleanliness control of IF steel during the RH refining process. J Univ Sci Technol Beijing, 2011, 33(Suppl1): 147

    崔衡, 陳斌, 王敏, 等. RH精煉過程中IF鋼潔凈度控制. 北京科技大學學報, 2011, 33(增刊1): 147
    [7] Wang M, Bao Y P, Cui H, et al. Effect of RH pure circulation on the cleanness of titanium stabilized interstitial-free (Ti-IF) steel. J Univ Sci Technol Beijing, 2011, 33(12): 1448

    王敏, 包燕平, 崔衡, 等. RH純循環對Ti-IF鋼潔凈度的影響. 北京科技大學學報, 2011, 33(12):1448
    [8] Yuan F M, Wang X H, Li H, et al. Cleanliness of interstitial-free steel slabs produced in different casting stages. J Univ Sci Technol Beijing, 2005, 27(4): 436 doi: 10.3321/j.issn:1001-053X.2005.04.012

    袁方明, 王新華, 李宏, 等. 不同澆鑄階段IF鋼連鑄板坯潔凈度. 北京科技大學學報, 2005, 27(4):436 doi: 10.3321/j.issn:1001-053X.2005.04.012
    [9] Cui H, Yue F, Bao Y P, et al. Study on cleanliness of IF steel first slab. Iron Steel, 2010, 45(3): 38

    崔衡, 岳峰, 包燕平, 等. IF鋼連鑄頭坯潔凈度研究. 鋼鐵, 2010, 45(3):38
    [10] Deng X X, Wang X H, Li L P, et al. Effect of ladle change process on the surface cleanliness of IF steel continuous casting slabs. J Univ Sci Technol Beijing, 2014, 36(7): 880

    鄧小旋, 王新華, 李林平, 等. 交換鋼包過程對IF鋼連鑄板坯表層潔凈度的影響. 北京科技大學學報, 2014, 36(7):880
    [11] Zhang Q Y, Wang L T, Wang X H. Influence of casting speed variation during unsteady continuous casting on non-metallic inclusions in IF steel slabs. ISIJ Int, 2006, 46(10): 1421 doi: 10.2355/isijinternational.46.1421
    [12] Kumar A, Choudhary S K, Ajmani S K. Distribution of macroinclusions across slab thickness. ISIJ Int, 2012, 52(12): 2305 doi: 10.2355/isijinternational.52.2305
    [13] Liu L. Development of process and equipment of RH vacuum refinery technology. Iron Steel, 2006, 41(8): 1 doi: 10.3321/j.issn:0449-749X.2006.08.001

    劉瀏. RH真空精煉工藝與裝備技術的發展. 鋼鐵, 2006, 41(8):1 doi: 10.3321/j.issn:0449-749X.2006.08.001
    [14] Han C J, Ai L Q, Liu B S, et al. Decarburization mechanism of RH-MFB refining process. J Univ Sci Technol Beijing, 2006, 13(3): 218 doi: 10.1016/S1005-8850(06)60046-7
    [15] Yamaguchi K, Kishimoto Y, Sakuraya T, et al. Effect of refining conditions for ultra low carbon steel on decarburization reaction in RH degasser. ISIJ Int, 1992, 32(1): 126 doi: 10.2355/isijinternational.32.126
    [16] Takahashi M, Matsumoto H, Saito T. Mechanism of decarburization in RH degasser. ISIJ Int, 1995, 35(12): 1452 doi: 10.2355/isijinternational.35.1452
    [17] Li C W, Cheng G G, Wang X H, et al. Internal decarburization mechanism and control technology of RH treatment for ultra-low carbon steel. J Univ Sci Technol Beijing, 2011, 33(3): 276

    李崇巍, 成國光, 王新華, 等. RH冶煉超低碳鋼內部脫碳機理及控制工藝. 北京科技大學學報, 2011, 33(3):276
    [18] Park Y G, Yi K W. A new numerical model for predicting carbon concentration during RH degassing treatment. ISIJ Int, 2003, 43(9): 1403 doi: 10.2355/isijinternational.43.1403
    [19] Inoue S, Furuno Y, Usui T, et al. Acceleration of decarburization in RH vacuum degassing process. ISIJ Int, 1992, 32(1): 120 doi: 10.2355/isijinternational.32.120
    [20] Harashima K, Mizoguchi S, Matsuo M, et al. Rates of nitrogen and carbon removal from liquid iron in low content region under reduced pressures. ISIJ Int, 1992, 32(1): 111 doi: 10.2355/isijinternational.32.111
    [21] Liu B S, Zhu G S, Li H X, et al. Decarburization rate of RH refining for ultra low carbon steel. Int J Miner Metall Mater, 2010, 17(1): 22 doi: 10.1007/s12613-010-0104-3
    [22] Doo W C, Kim D Y, Kang S C, et al. The morphology of Al?Ti?O complex oxide inclusions formed in an ultra low-carbon steel melt during the RH process. Met Mater Int, 2007, 13(3): 249 doi: 10.1007/BF03027813
    [23] Hasunuma J, Kurose Y, Hiwasa S, et al. Production of ultra-low carbon steel by K-BOP process at Kawasaki Steel // Steelmaking Conference Proceedings. Detroit, 1990: 91
    [24] Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
    [25] Zhang X Z. Principles of Transport Phenomena in Metallurgy. Beijing: Metallurgical Industry Press, 1988

    張先棹. 冶金傳輸原理. 北京: 冶金工業出版社, 1988
    [26] Zhong L C, Zeze M, Mukai K. Density of liquid IF steel containing Ti. ISIJ Int, 2005, 45(3): 312 doi: 10.2355/isijinternational.45.312
    [27] Wakoh M, Sano N. Behavior of alumina inclusions just after deoxidation. ISIJ Int, 2007, 47(5): 627 doi: 10.2355/isijinternational.47.627
  • 加載中
圖(13) / 表(1)
計量
  • 文章訪問數:  1427
  • HTML全文瀏覽量:  962
  • PDF下載量:  81
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-19
  • 刊出日期:  2020-07-01

目錄

    /

    返回文章
    返回