-
摘要: 無間隙原子鋼(IF鋼)主要用于汽車、家電等行業,除需要極低的C、N含量外,對最終產品的表面質量也有嚴格要求。鋼中O含量和夾雜物對產品的表面質量影響很大。快速降低鋼中C含量、同時保證鋼的高潔凈度是非常重要的。為此,通過在Ruhrstahl Hereaeus(RH)精煉?連鑄過程密集取樣,采用ASPEX掃描電鏡詳細研究了RH吹氧強制脫碳工藝下吹氧量對IF鋼潔凈度的影響。結果表明,本實驗條件下,吹氧量對精煉?連鑄過程中夾雜物的類型和形貌沒有影響。吹氧量對RH精煉前期(加Al后4 min內)鋼液潔凈度影響較大,而對后期生產過程中鋼液的潔凈度影響不大;精煉前期,吹氧量高,鋼液中總氧(T.O)含量和夾雜物的量增加。簇群狀夾雜物主要出現在RH破空之前,真空精煉結束后鋼液中很難發現簇群狀夾雜物。中間包鋼液潔凈度與RH吹氧量相關性不大,而與加Al脫氧前鋼液中O含量相關性很大,加Al脫氧前鋼液中O含量高,中間包鋼液潔凈度差;為提高中間包鋼液的潔凈度,應盡量減少加Al脫氧前鋼液中的O含量。隨著生產的進行,鋼液中T.O含量、夾雜物的量呈下降趨勢,潔凈度逐漸提高。Abstract: Interstitial-free (IF) steel is widely used in the automobile industry, home appliance industry, etc. Not only very low content of carbon and nitrogen, but also high quality surface of the final product are required for this steel grade. The contents of oxygen and inclusions in the steel have a great influence on the surface quality of the final product. Therefore, it is very important to decrease the carbon content effectively and keep high steel cleanliness at the same time in industrial production. In present work, the effect of oxygen blowing on the cleanliness of IF steel under the forced decarburization by oxygen blowing in the Ruhrstahl Hereaeus (RH) refining process was studied through dense sampling during RH and continuous casting process, and inclusion analysis was carried out with automatic scanning electron microscopy (ASPEX). Oxygen blowing was found to have little effect on the inclusions’ types and morphology throughout the process. The oxygen blowing rate had a great influence on the cleanliness of the molten steel in the early stage of RH refining (within 4 min after adding Al). An increase in the oxygen blowing rate led to an increase in the content of total oxygen (T.O) and the amount of inclusions in the steel, but it had little effect on the steel cleanliness in the subsequent process. Cluster inclusions were mainly found before the vacuum was broken, and finding them in steel after RH refining was difficult. The steel cleanliness in a tundish had little correlation with the oxygen blowing rate during RH treatment, but had a great correlation with the oxygen content in the molten steel before Al deoxidation. The higher the oxygen content before Al deoxidation, the worse the steel cleanliness in the tundish. To improve the cleanliness in the tundish, the oxygen content in molten steel before Al addition should be decreased as much as possible. The T.O and the inclusions amount in the steel showed a downward trend as the production proceeded, which indicates that the steel cleanliness was gradually improved.
-
表 1 RH吹氧情況
Table 1. Oxygen blowing during RH treatment
Heat number Oxygen blowing/m3 Decarburization/
%Oxygen content before deoxidation/% 1 35 0.0185 0.0365 2 215 0.0302 0.0362 3 220 0.0262 0.0350 4 235 0.0252 0.0310 5 295 0.0418 0.0291 6 160 0.0341 0.0388 www.77susu.com -
參考文獻
[1] Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1王新華. 高品質冷軋薄板鋼中非金屬夾雜物控制技術. 鋼鐵, 2013, 48(9):1 [2] Matsuura H, Wang C, Wen G H, et al. The transient stages of inclusion evolution during Al and/or Ti additions to molten iron. ISIJ Int, 2007, 47(9): 1265 doi: 10.2355/isijinternational.47.1265 [3] Basu S, Choudhary S K, Girase N U. Nozzle clogging behaviour of Ti-bearing Al-killed ultra low carbon steel. ISIJ Int, 2004, 44(10): 1653 doi: 10.2355/isijinternational.44.1653 [4] Wang M, Bao Y P, Yang Q. Effect of ferro-titanium alloying process on steel cleanness. J Univ Sci Technol Beijing, 2013, 35(6): 725王敏, 包燕平, 楊荃. 鈦合金化過程對鋼液潔凈度的影響. 北京科技大學學報, 2013, 35(6):725 [5] Qin Y M, Wang X H, Li L P, et al. Effect of oxidizing slag on cleanliness of IF steel during ladle holding process. Steel Res Int, 2015, 86(9): 1037 doi: 10.1002/srin.201400349 [6] Cui H, Chen B, Wang M, et al. Cleanliness control of IF steel during the RH refining process. J Univ Sci Technol Beijing, 2011, 33(Suppl1): 147崔衡, 陳斌, 王敏, 等. RH精煉過程中IF鋼潔凈度控制. 北京科技大學學報, 2011, 33(增刊1): 147 [7] Wang M, Bao Y P, Cui H, et al. Effect of RH pure circulation on the cleanness of titanium stabilized interstitial-free (Ti-IF) steel. J Univ Sci Technol Beijing, 2011, 33(12): 1448王敏, 包燕平, 崔衡, 等. RH純循環對Ti-IF鋼潔凈度的影響. 北京科技大學學報, 2011, 33(12):1448 [8] Yuan F M, Wang X H, Li H, et al. Cleanliness of interstitial-free steel slabs produced in different casting stages. J Univ Sci Technol Beijing, 2005, 27(4): 436 doi: 10.3321/j.issn:1001-053X.2005.04.012袁方明, 王新華, 李宏, 等. 不同澆鑄階段IF鋼連鑄板坯潔凈度. 北京科技大學學報, 2005, 27(4):436 doi: 10.3321/j.issn:1001-053X.2005.04.012 [9] Cui H, Yue F, Bao Y P, et al. Study on cleanliness of IF steel first slab. Iron Steel, 2010, 45(3): 38崔衡, 岳峰, 包燕平, 等. IF鋼連鑄頭坯潔凈度研究. 鋼鐵, 2010, 45(3):38 [10] Deng X X, Wang X H, Li L P, et al. Effect of ladle change process on the surface cleanliness of IF steel continuous casting slabs. J Univ Sci Technol Beijing, 2014, 36(7): 880鄧小旋, 王新華, 李林平, 等. 交換鋼包過程對IF鋼連鑄板坯表層潔凈度的影響. 北京科技大學學報, 2014, 36(7):880 [11] Zhang Q Y, Wang L T, Wang X H. Influence of casting speed variation during unsteady continuous casting on non-metallic inclusions in IF steel slabs. ISIJ Int, 2006, 46(10): 1421 doi: 10.2355/isijinternational.46.1421 [12] Kumar A, Choudhary S K, Ajmani S K. Distribution of macroinclusions across slab thickness. ISIJ Int, 2012, 52(12): 2305 doi: 10.2355/isijinternational.52.2305 [13] Liu L. Development of process and equipment of RH vacuum refinery technology. Iron Steel, 2006, 41(8): 1 doi: 10.3321/j.issn:0449-749X.2006.08.001劉瀏. RH真空精煉工藝與裝備技術的發展. 鋼鐵, 2006, 41(8):1 doi: 10.3321/j.issn:0449-749X.2006.08.001 [14] Han C J, Ai L Q, Liu B S, et al. Decarburization mechanism of RH-MFB refining process. J Univ Sci Technol Beijing, 2006, 13(3): 218 doi: 10.1016/S1005-8850(06)60046-7 [15] Yamaguchi K, Kishimoto Y, Sakuraya T, et al. Effect of refining conditions for ultra low carbon steel on decarburization reaction in RH degasser. ISIJ Int, 1992, 32(1): 126 doi: 10.2355/isijinternational.32.126 [16] Takahashi M, Matsumoto H, Saito T. Mechanism of decarburization in RH degasser. ISIJ Int, 1995, 35(12): 1452 doi: 10.2355/isijinternational.35.1452 [17] Li C W, Cheng G G, Wang X H, et al. Internal decarburization mechanism and control technology of RH treatment for ultra-low carbon steel. J Univ Sci Technol Beijing, 2011, 33(3): 276李崇巍, 成國光, 王新華, 等. RH冶煉超低碳鋼內部脫碳機理及控制工藝. 北京科技大學學報, 2011, 33(3):276 [18] Park Y G, Yi K W. A new numerical model for predicting carbon concentration during RH degassing treatment. ISIJ Int, 2003, 43(9): 1403 doi: 10.2355/isijinternational.43.1403 [19] Inoue S, Furuno Y, Usui T, et al. Acceleration of decarburization in RH vacuum degassing process. ISIJ Int, 1992, 32(1): 120 doi: 10.2355/isijinternational.32.120 [20] Harashima K, Mizoguchi S, Matsuo M, et al. Rates of nitrogen and carbon removal from liquid iron in low content region under reduced pressures. ISIJ Int, 1992, 32(1): 111 doi: 10.2355/isijinternational.32.111 [21] Liu B S, Zhu G S, Li H X, et al. Decarburization rate of RH refining for ultra low carbon steel. Int J Miner Metall Mater, 2010, 17(1): 22 doi: 10.1007/s12613-010-0104-3 [22] Doo W C, Kim D Y, Kang S C, et al. The morphology of Al?Ti?O complex oxide inclusions formed in an ultra low-carbon steel melt during the RH process. Met Mater Int, 2007, 13(3): 249 doi: 10.1007/BF03027813 [23] Hasunuma J, Kurose Y, Hiwasa S, et al. Production of ultra-low carbon steel by K-BOP process at Kawasaki Steel // Steelmaking Conference Proceedings. Detroit, 1990: 91 [24] Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606 [25] Zhang X Z. Principles of Transport Phenomena in Metallurgy. Beijing: Metallurgical Industry Press, 1988張先棹. 冶金傳輸原理. 北京: 冶金工業出版社, 1988 [26] Zhong L C, Zeze M, Mukai K. Density of liquid IF steel containing Ti. ISIJ Int, 2005, 45(3): 312 doi: 10.2355/isijinternational.45.312 [27] Wakoh M, Sano N. Behavior of alumina inclusions just after deoxidation. ISIJ Int, 2007, 47(5): 627 doi: 10.2355/isijinternational.47.627 -