<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

摻雜氧化鋁對納米鎢粉燒結過程的影響

宋成民 張國華 周國治

宋成民, 張國華, 周國治. 摻雜氧化鋁對納米鎢粉燒結過程的影響[J]. 工程科學學報, 2020, 42(7): 875-883. doi: 10.13374/j.issn2095-9389.2019.07.13.001
引用本文: 宋成民, 張國華, 周國治. 摻雜氧化鋁對納米鎢粉燒結過程的影響[J]. 工程科學學報, 2020, 42(7): 875-883. doi: 10.13374/j.issn2095-9389.2019.07.13.001
SONG Cheng-min, ZHANG Guo-hua, CHOU Kuo-chih. Effect of Al2O3 addition on the sintering behavior of nano tungsten powder[J]. Chinese Journal of Engineering, 2020, 42(7): 875-883. doi: 10.13374/j.issn2095-9389.2019.07.13.001
Citation: SONG Cheng-min, ZHANG Guo-hua, CHOU Kuo-chih. Effect of Al2O3 addition on the sintering behavior of nano tungsten powder[J]. Chinese Journal of Engineering, 2020, 42(7): 875-883. doi: 10.13374/j.issn2095-9389.2019.07.13.001

摻雜氧化鋁對納米鎢粉燒結過程的影響

doi: 10.13374/j.issn2095-9389.2019.07.13.001
詳細信息
    通訊作者:

    E-mail:ghzhang0914@ustb.edu.cn

  • 中圖分類號: TF12

Effect of Al2O3 addition on the sintering behavior of nano tungsten powder

More Information
  • 摘要: 以碳熱預還原和氫氣深還原兩步制備的納米鎢粉作為燒結原料,即先通過碳黑還原脫除三氧化鎢中的大部分氧,再以氫還原脫除殘留的氧。該方法制備的鎢粉顆粒呈球形形貌,平均晶粒度可達90 nm。同時,向鎢粉中摻雜質量分數為1%和2%的氧化鋁,探究了氧化鋁對鎢粉燒結行為的影響。通過燒結樣品的斷口形貌和晶粒的平均尺寸分析發現,氧化鋁對燒結后期的晶粒長大有明顯的抑制作用,相同的燒結溫度下晶粒的尺寸隨著氧化鋁含量的上升而減小。在1600 ℃時,純鎢粉燒結坯的晶粒平均尺寸為2.75 μm,但添加質量分數為1%和2%氧化鋁的燒結樣品晶粒平均尺寸約為1.5 μm,這是由于氧化鋁能有效地抑制燒結后期的鎢粉晶粒長大。純鎢粉和摻雜氧化鋁鎢粉的燒結坯的硬度隨溫度升高具有不同的趨勢。摻雜鎢粉燒結坯的硬度隨著溫度的升高而升高,且其最大值高于800 HV。但是,純鎢粉燒結坯的硬度隨燒結溫度增加而先增加后降低,在1400 ℃時取得最大值(473.6 HV),這是由純鎢粉燒結坯的晶粒在高溫下急劇長大所導致。在燒結溫度為1600 ℃時,純鎢粉、摻雜質量分數1%和2%的氧化鋁摻雜的鎢粉的燒結坯的相對密度依次為98.52%、95.43%和93.5%。

     

  • 圖  1  原料的微觀形貌圖。(a)WO3;(b)炭黑

    Figure  1.  Micrograph of raw materials: (a) WO3; (b) carbon black

    圖  2  碳熱還原后前體的X射線衍射圖

    Figure  2.  X-ray diffraction patterns of products after carbothermic reduction

    圖  3  氫氣還原后的粉體的X射線衍射圖。(a)W-0.01;(b)W-0.02;(c)NW

    Figure  3.  X-ray diffraction patterns of products after hydrogen reduction: (a) W-0.01; (b) W-0.02; (c) NW

    圖  4  三種鎢粉的相對密度與燒結溫度的關系圖

    Figure  4.  Variation of relative density of the three kinds of compacts as the function of sintering temperature

    圖  5  三種鎢粉在不同溫度下的斷口形貌。(a)1200 ℃;(b)1300 ℃;(c)1400 ℃;(d)1500 ℃;(e)1600 ℃

    Figure  5.  Fracture morphologies of the three kinds of W bulk materials at different sintering temperatures: (a) 1200 ℃; (b) 1300 ℃; (c) 1400 ℃; (d) 1500 ℃; (e) 1600 ℃

    圖  6  三種燒結坯的晶粒尺寸與溫度的關系

    Figure  6.  Grain size vs sintering temperature in the three kinds of sintered compacts

    圖  7  三種鎢粉的硬度與燒結溫度的關系

    Figure  7.  Change in microhardness with sintering temperature of the three kinds of sintered compacts

    圖  8  第二相顆粒EDS圖譜

    Figure  8.  EDS analysis of second-phase particle

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Han Y, Fan J L, Liu T, et al. The effect of trace nickel additive and ball milling treatment on the near-full densification behavior of ultrafine tungsten powder. Int J Refract Met Hard Mater, 2012, 34: 18 doi: 10.1016/j.ijrmhm.2012.02.014
    [2] Li B Q, Sun Z Q, Hou G L, et al. The sintering behavior of quasi-spherical tungsten nanopowders. Int J Refract Met Hard Mater, 2016, 56: 44 doi: 10.1016/j.ijrmhm.2015.10.007
    [3] Kaufmann M, Neu R. Tungsten as first wall material in fusion devices. Fusion Eng Des, 2007, 82(5-14): 521 doi: 10.1016/j.fusengdes.2007.03.045
    [4] Ren C, Fang Z Z, Zhang H, et al. The study on low temperature sintering of nano-tungsten powders. Int J Refract Met Hard Mater, 2016, 61: 273 doi: 10.1016/j.ijrmhm.2016.10.003
    [5] Kitsunai Y, Kurishita H, Kayano H, et al. Microstructure and impact properties of ultra-fine grained tungsten alloys dispersed with TiC. J Nucl Mater, 1999, 271-272: 423 doi: 10.1016/S0022-3115(98)00753-3
    [6] Kurishita H, Amano Y, Kobayashi S, et al. Development of ultra-fine grained W–TiC and their mechanical properties for fusion applications. J Nucl Mater, 2007, 367-370: 1453 doi: 10.1016/j.jnucmat.2007.04.008
    [7] Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: top-down and bottom-up—Application to tungsten. Mater Sci Eng A, 2007, 467(1-2): 33 doi: 10.1016/j.msea.2007.02.099
    [8] Tan J, Zhou Z J, Qu D D, et al. Current status of the ultra-fine grained tungsten and its alloys. Powder Metall Ind, 2012, 22(3): 56 doi: 10.3969/j.issn.1006-6543.2012.03.010

    談軍, 周張健, 屈丹丹, 等. 超細晶鎢及其復合材料的研究現狀. 粉末冶金工業, 2012, 22(3):56 doi: 10.3969/j.issn.1006-6543.2012.03.010
    [9] Ren C, Koopman M, Fang Z Z, et al. A study on the sintering of ultrafine grained tungsten with Ti-based additives. Int J Refract Met Hard Mater, 2017, 65: 2 doi: 10.1016/j.ijrmhm.2016.11.013
    [10] Zhang S W, Wen Y, Zhang H J. Low temperature preparation of tungsten nanoparticles from molten salt. Powder Technol, 2014, 253: 464 doi: 10.1016/j.powtec.2013.11.052
    [11] Ryu T, Sohn H Y, Hwang K S, et al. Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. Int J Refract Met Hard Mater, 2009, 27(1): 149 doi: 10.1016/j.ijrmhm.2008.06.002
    [12] Ricceri R, Matteazzi P. A study of formation of nanometric W by room temperature mechanosynthesis. J Alloys Compd, 2003, 358(1-2): 71 doi: 10.1016/S0925-8388(03)00125-7
    [13] Ryu T, Hwang K S, Choi Y J, et al. The sintering behavior of nanosized tungsten powder prepared by a plasma process. Int J Refract Met Hard Mater, 2009, 27(4): 701 doi: 10.1016/j.ijrmhm.2008.11.004
    [14] Groza J R, Zavaliangos A. Sintering activation by external electrical field. Mater Sci Eng A, 2000, 287(2): 171 doi: 10.1016/S0921-5093(00)00771-1
    [15] Mondal A, Upadhyaya A, Agrawal D. Effect of heating mode on sintering of tungsten. Int J Refract Met Hard Mater, 2010, 28(5): 597 doi: 10.1016/j.ijrmhm.2010.05.002
    [16] Prabhu G, Chakraborty A, Sarma B. Microwave sintering of tungsten. Int J Refract Met Hard Mater, 2009, 27(3): 545 doi: 10.1016/j.ijrmhm.2008.07.001
    [17] Zhou Z J, Ma Y, Du J, et al. Fabrication and characterization of ultra-fine grained tungsten by resistance sintering under ultra-high pressure. Mater Sci Eng A, 2009, 505(1-2): 131 doi: 10.1016/j.msea.2008.11.012
    [18] Zhou Z J, Pintsuk G, Linke J, et al. Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure. Fusion Eng Des, 2010, 85(1): 115 doi: 10.1016/j.fusengdes.2009.08.003
    [19] Ding L, Xiang D P, Li Y Y, et al. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. Int J Refract Met Hard Mater, 2012, 33: 65 doi: 10.1016/j.ijrmhm.2012.02.017
    [20] Liu R, Zhou Y, Hao T, et al. Microwave synthesis and properties of fine-grained oxides dispersion strengthened tungsten. J Nucl Mater, 2012, 424(1-3): 171 doi: 10.1016/j.jnucmat.2012.03.008
    [21] Kim Y, Lee K H, Kim E P, et al. Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process. Int J Refract Met Hard Mater, 2009, 27(5): 842 doi: 10.1016/j.ijrmhm.2009.03.003
    [22] Rieth M, Dafferner B. Limitations of W and W?1%La2O3 for use as structural materials. J Nucl Mater, 2005, 342(1-3): 20 doi: 10.1016/j.jnucmat.2005.03.013
    [23] Yar M A, Wahlberg S, Bergqvist H, et al. Chemically produced nanostructured ODS–lanthanum oxide–tungsten composites sintered by spark plasma. J Nucl Mater, 2011, 408(2): 129 doi: 10.1016/j.jnucmat.2010.10.060
    [24] Yar M A, Wahlberg S, Bergqvist H, et al. Spark plasma sintering of tungsten?yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization. J Nucl Mater, 2011, 412(2): 227 doi: 10.1016/j.jnucmat.2011.03.007
    [25] Wesemann I, Spielmann W, Heel P, et al. Fracture strength and microstructure of ODS tungsten alloys. Int J Refract Met Hard Mater, 2010, 28(6): 687 doi: 10.1016/j.ijrmhm.2010.05.009
    [26] Li B Q, Sun Z Q, Hou G L, et al. The effects of alumina reinforcement and nickel activated sintering on nanosized tungsten matrix. J Alloys Compd, 2017, 692: 420 doi: 10.1016/j.jallcom.2016.09.081
    [27] Gaur R P S. Modern hydrometallurgical production methods for tungsten. JOM, 2006, 58(9): 45 doi: 10.1007/s11837-006-0082-0
    [28] Sun G D, Zhang G H. Novel pathway to prepare Mo nanopowder via hydrogen reduction of MoO2 containing Mo nanoseeds produced by reducing MoO3 with carbon black. JOM, 2019, 72: 347
    [29] Sun G D, Wang K F, Song C M, et al. A low-cost, efficient, and industrially feasible pathway for large scale preparation of tungsten nanopowders. Int J Refract Met Hard Mater, 2019, 78: 100 doi: 10.1016/j.ijrmhm.2018.08.013
    [30] Wang D H, Sun G D, Zhang G H. Preparation of ultrafine Mo powders via carbothermic pre-reduction of molybdenum oxide and deep reduction by hydrogen. Int J Refract Met Hard Mater, 2018, 75: 70 doi: 10.1016/j.ijrmhm.2018.04.002
    [31] Fang Z Z, Wang H T, Kumar V. Coarsening, densification, and grain growth during sintering of nano-sized powders—a perspective. Int J Refract Met Hard Mater, 2017, 62: 110 doi: 10.1016/j.ijrmhm.2016.09.004
    [32] Kim Y, Hong M H, Lee S H, et al. The effect of yttrium oxide on the sintering behavior and hardness of tungsten. Met Mater Int, 2006, 12(3): 245 doi: 10.1007/BF03027538
    [33] Wu X W, Luo J S, Lu B Z, et al. Crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature. Trans Nonferrous Met Soc China, 2009, 19(Suppl 3): s785
    [34] Wang L, Zhang G H, Chou K C. Mechanism and kinetic study of hydrogen reduction of ultra-fine spherical MoO3 to MoO2. Int J Refract Met Hard Mater, 2016, 54: 342 doi: 10.1016/j.ijrmhm.2015.09.003
    [35] Dang J, Zhang G H, Chou K C, et al. Kinetics and mechanism of hydrogen reduction of MoO3 to MoO2. Int J Refract Met Hard Mater, 2013, 41: 216 doi: 10.1016/j.ijrmhm.2013.04.002
    [36] Wang D H, Jiao S Q, Zhang G H, et al. Preparation of submicron Mo powders by the reaction between MoO2 and activated carbon. J Aust Ceram Soc, 2019, 55(2): 297 doi: 10.1007/s41779-018-0235-y
    [37] Wang D H, Zhang G H, Chou K C. A new route to produce submicron Mo powders via carbothermal pre-reduction followed by deep magnesium reduction. JOM, 2018, 70(11): 2561 doi: 10.1007/s11837-018-3062-2
    [38] Fang Z Z, Wang X, Ryu T, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – a review. Int J Refract Met Hard Mater, 2009, 27(2): 288 doi: 10.1016/j.ijrmhm.2008.07.011
    [39] Wang H T, Fang Z Z. Kinetic analysis of densification behavior of nano-sized tungsten powder. J Am Ceram Soc, 2012, 95(8): 2458 doi: 10.1111/j.1551-2916.2012.05282.x
    [40] Wahlberg S, Yar M A, Abuelnaga M O, et al. Fabrication of nanostructured W–Y2O3 materials by chemical methods. J Mater Chem, 2012, 22(25): 12622 doi: 10.1039/c2jm30652b
    [41] Sylwestrowicz W, Hall E O. The deformation and ageing of mild steel. Proc Phys Soc Sect B, 2002, 64(6): 495
    [42] Dong Z, Liu N, Ma Z Q, et al. Microstructure refinement in W–Y2O3 alloy fabricated by wet chemical method with surfactant addition and subsequent spark plasma sintering. Sci Rep, 2017, 7: 6051 doi: 10.1038/s41598-017-06437-z
  • 加載中
圖(8)
計量
  • 文章訪問數:  1392
  • HTML全文瀏覽量:  1260
  • PDF下載量:  26
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-13
  • 刊出日期:  2020-07-01

目錄

    /

    返回文章
    返回