<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

無煙煤制備高性能鋰離子電池負極材料的研究

王晶晶 趙洪亮 胡韜 劉風琴

王晶晶, 趙洪亮, 胡韜, 劉風琴. 無煙煤制備高性能鋰離子電池負極材料的研究[J]. 工程科學學報, 2020, 42(7): 884-893. doi: 10.13374/j.issn2095-9389.2019.07.11.005
引用本文: 王晶晶, 趙洪亮, 胡韜, 劉風琴. 無煙煤制備高性能鋰離子電池負極材料的研究[J]. 工程科學學報, 2020, 42(7): 884-893. doi: 10.13374/j.issn2095-9389.2019.07.11.005
WANG Jing-jing, ZHAO Hong-liang, HU Tao, LIU Feng-qin. High-performance anode materials based on anthracite for lithium-ion battery applications[J]. Chinese Journal of Engineering, 2020, 42(7): 884-893. doi: 10.13374/j.issn2095-9389.2019.07.11.005
Citation: WANG Jing-jing, ZHAO Hong-liang, HU Tao, LIU Feng-qin. High-performance anode materials based on anthracite for lithium-ion battery applications[J]. Chinese Journal of Engineering, 2020, 42(7): 884-893. doi: 10.13374/j.issn2095-9389.2019.07.11.005

無煙煤制備高性能鋰離子電池負極材料的研究

doi: 10.13374/j.issn2095-9389.2019.07.11.005
基金項目: 中國工程院院地合作資助項目(2019NXZD5)
詳細信息
    通訊作者:

    E-mail:liufq@ustb.edu.cn

  • 中圖分類號: TM912.9

High-performance anode materials based on anthracite for lithium-ion battery applications

More Information
  • 摘要: 以我國資源豐富的低成本優質無煙煤為原料,經過2800 ℃高溫純化、石墨化處理,制備出鋰電池用負極材料,用相同手段處理商業化石墨的前體石油焦與石墨化無煙煤作對比。通過X射線衍射(XRD),掃描電子顯微鏡(SEM),透射電子顯微鏡(TEM),拉曼光譜(Roman)和氮吸附?解吸等手段對無煙煤基負極材料進行微觀結構的表征。采用恒流充放電(GCD),循環伏安(CV)表征其電化學性能。實驗結果表明,無煙煤基石墨化負極材料的石墨化度可達95.44%,比表面積為1.1319 m2·g?1,石墨片層結構平整光滑。該石墨化無煙煤作為鋰離子電池的負極材料首次庫倫效率為87%,在0.1C的電流密度下具有345.3 mA·h·g?1的可逆容量,且在高倍率下該材料比石墨化石油焦材料顯現出更好儲鋰性能,這歸功于石墨化無煙煤較為規則高度有序的表面結構。在不同倍率循環后電流密度恢復到0.1C時容量基本無衰減,100圈循環后可逆容量保持率高達93.8%,基本與石墨化石油焦負極相當,擁有優異的循環穩定性。無煙煤基石墨在容量、倍率性能及循環穩定性上基本接近甚至超過石墨化石油焦。本研究表明,采用優質無煙煤作為原料生產鋰離子電池負極材料具有潛在的研究價值和廣闊的商業前景。

     

  • 圖  1  無煙煤和石油焦及其石墨化后的微觀形貌圖。(a)無煙煤前體;(b,c,d)GA樣品掃描電鏡圖;(e)石油焦前體;(f,g,h)GPC樣品掃描電鏡圖

    Figure  1.  Microscopic topography of anthraciteand petroleum coke after graphitization: (a) anthracite precursor; (b, c, d) GA sample; (e) petroleum coke precursor; (f,g,h) scanning electron micrograph of GPC sample

    圖  2  GA樣品透射電鏡圖。(a,b)透射電鏡;(c,d)高倍透射電鏡

    Figure  2.  Transmission electron micrograph of GA sample: (a, b) TEM; (c, d) HRTEM

    圖  3  無煙煤和GA樣品的X射線衍射圖

    Figure  3.  XRD pattern of anthracite and GA samples

    圖  4  無煙煤和GA樣品的拉曼光譜圖

    Figure  4.  Raman spectra of anthracite and GA samples

    圖  5  GA和GPC樣品的吸附曲線及孔徑分布情況。(a)GA的氮氣吸附?解吸等溫線;(b)GA的孔徑分布曲線;(c)GPC的氮氣吸附?解吸等溫線;(d)GPC的孔徑分布曲線

    Figure  5.  Adsorption curve and pore size distribution of GA and GPC sample: (a) nitrogen adsorption-desorption isotherm of GA; (b) pore size distribution curve of GA; (c) nitrogen adsorption-desorption isotherm of GPC; (d) pore size distribution curve of GPC

    圖  6  GA和GPC不同倍率充放電曲線。(a)0.1C~1C倍率下GA的充放電曲線;(b)0.1C~1C倍率下GPC的充放電曲線

    Figure  6.  Charge and discharge curves of GA and GPC at different magnifications: (a) charge and discharge curves of GA at 0.1C–1C rate; (b) charge and discharge curves of GPC at 0.1C–1C rate

    圖  7  GA和GPC的倍率曲線及循環伏安曲線。(a)0.1C~1C倍率下GA和GPC的倍率曲線;(b)GA的循環伏安掃描曲線

    Figure  7.  Magnification curve and cyclic voltammetry curve of GA and GPC: (a) magnification curve of GA and GPC at 0.1C–1C rate; (b) cyclic voltammetric curve of GA

    圖  8  GA和GPC的循環性能和庫倫效率

    Figure  8.  Cyclic performance and Coulombic efficiency of GA and GPC

    表  1  實驗藥品和試劑

    Table  1.   Experimental samples and reagents

    Reagent nameChemical formulaReagent gradeSupplier
    Polyvinylidene fluoride(PVDF)[?CH2?CF2?]Premium gradeCALB Co., Ltd.
    N-methylpyrrolidone(NMP)C5H9NOElectronic gradeShanghai Titan Technology Co., Ltd.
    ElectrolyteLiPF6Electronic gradeBAK Battery Co., Ltd.
    Acetylene carbon black(Super-P)CElectronic gradeMitsubishi Chemical Co., Ltd.
    下載: 導出CSV

    表  2  石墨化無煙煤灼燒數據

    Table  2.   Graphitized anthracite burning data

    NumberNet weight of crucible, m1/gSample quality, m2/gTotal mass after burning, m3/gAsh, (m3?m1m2?1/%
    117.10981.513717.11400.277
    217.06901.555317.07320.270
    316.76451.041516.76740.278
    416.91991.051316.92290.275
    下載: 導出CSV

    表  3  GA和GPC的首次充放電容量和庫倫效率

    Table  3.   First charge and discharge capacity and coulombic efficiency of GA and GPC

    Sample nameFirst discharge capacity/(mA·h·g?1)First charge capacity/(mA·h·g?1)Irreversible capacity/(mA·h·g?1)Coulombic efficiency/%
    GA415.4361.45487
    GPC395.8346.349.587.5
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Griffiths G. Review of developments in lithium secondary battery technology. Underwater Technol, 2016, 33(3): 153 doi: 10.3723/ut.33.153
    [2] Mekonnen Y, Sundararajan A, Sarwat A I. A review of cathode and anode materials for lithium-ion batteries//SoutheastCon 2016. Norfolk, 2016: 1
    [3] Nitta N, Wu F X, Lee J T, et al. Li-ion battery materials: present and future. Mater Today, 2015, 18(5): 252 doi: 10.1016/j.mattod.2014.10.040
    [4] Mahmood N, Tang T Y, Hou Y L. Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater, 2016, 6(17): 1600374 doi: 10.1002/aenm.201600374
    [5] Kim Y J, Yang H, Yoon S H, et al. Anthracite as a candidate for lithium ion battery anode. J Power Sources, 2003, 113(1): 157 doi: 10.1016/S0378-7753(02)00528-1
    [6] Cameán I, Lavela P, Tirado J L, et al. On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel, 2010, 89(5): 986 doi: 10.1016/j.fuel.2009.06.034
    [7] Zhou X Y, Ma L L, Yang J, et al. Properties of graphitized boron-doped coal-based coke powders as anode for lithium-ion batteries. J Electroanal Chem, 2013, 698: 39 doi: 10.1016/j.jelechem.2013.03.019
    [8] Xing B L, Zhang C T, Cao Y J, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel Process Technol, 2018, 172: 162 doi: 10.1016/j.fuproc.2017.12.018
    [9] Xiao J, Li F C, Zhong Q F, et al. Effect of high-temperature pyrolysis on the structure and properties of coal and petroleum coke. J Anal Appl Pyrol, 2016, 117: 64 doi: 10.1016/j.jaap.2015.12.015
    [10] Liu X X, Luo J, Zhu Y T, et al. Removal of methylene blue from aqueous solutions by an adsorbent based on metal-organic framework and polyoxometalate. J Alloys Compd, 2015, 648: 986 doi: 10.1016/j.jallcom.2015.07.065
    [11] Tian B, Li P F, Li D W, et al. Preparation of micro-porous monolithic activated carbon from anthracite coal using coal tar pitch as binder. J Porous Mater, 2017, 25(4): 1
    [12] Wu X, Yang X L, Zhang F, et al. Carbon-coated isotropic natural graphite spheres as anode material for lithium-ion batteries. Ceram Int, 2017, 43(12): 9458 doi: 10.1016/j.ceramint.2017.04.123
    [13] H?gstr?m K C, Malmgren S, Hahlin M, et al. The buried carbon/solid electrolyte interphase in Li-ion batteries studied by hard X-ray photoelectron spectroscopy. Electrochim Acta, 2014, 138: 430 doi: 10.1016/j.electacta.2014.06.129
    [14] Ramos A, Cameán I, Cuesta N, et al. Graphitized stacked-cup carbon nanofibers as anode materials for lithium-ion batteries. Electrochim Acta, 2014, 146: 769 doi: 10.1016/j.electacta.2014.09.035
    [15] Tian M, Wang W, Liu Y, et al. A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy, 2015, 11: 500 doi: 10.1016/j.nanoen.2014.11.006
    [16] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta, 2010, 55(22): 6332 doi: 10.1016/j.electacta.2010.05.072
    [17] Jung K N, Pyun S I. Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept. Electrochim Acta, 2006, 51(13): 2646 doi: 10.1016/j.electacta.2005.08.008
    [18] Cameán I, Garcia A B. Graphite materials prepared by HTT of unburned carbon from coal combustion fly ashes: Performance as anodes in lithium-ion batteries. J Power Sources, 2011, 196(10): 4816 doi: 10.1016/j.jpowsour.2011.01.041
    [19] Wang C, Zhao H, Wang J, et al. Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries. Ionics, 2013, 19(2): 221
  • 加載中
圖(8) / 表(3)
計量
  • 文章訪問數:  1631
  • HTML全文瀏覽量:  1100
  • PDF下載量:  82
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-11
  • 刊出日期:  2020-07-01

目錄

    /

    返回文章
    返回