<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

K-TIG焊接中厚板的工藝窗口改進

王泰 敖三三 魏祺 蔡養川 曾黎 羅震

王泰, 敖三三, 魏祺, 蔡養川, 曾黎, 羅震. K-TIG焊接中厚板的工藝窗口改進[J]. 工程科學學報, 2020, 42(6): 763-768. doi: 10.13374/j.issn2095-9389.2019.07.08.010
引用本文: 王泰, 敖三三, 魏祺, 蔡養川, 曾黎, 羅震. K-TIG焊接中厚板的工藝窗口改進[J]. 工程科學學報, 2020, 42(6): 763-768. doi: 10.13374/j.issn2095-9389.2019.07.08.010
WANG Tai, AO San-san, WEI Qi, CAI Yang-chuan, ZENG Li, LUO Zhen. Improvement of process window for medium and thicker plates welded by K-TIG[J]. Chinese Journal of Engineering, 2020, 42(6): 763-768. doi: 10.13374/j.issn2095-9389.2019.07.08.010
Citation: WANG Tai, AO San-san, WEI Qi, CAI Yang-chuan, ZENG Li, LUO Zhen. Improvement of process window for medium and thicker plates welded by K-TIG[J]. Chinese Journal of Engineering, 2020, 42(6): 763-768. doi: 10.13374/j.issn2095-9389.2019.07.08.010

K-TIG焊接中厚板的工藝窗口改進

doi: 10.13374/j.issn2095-9389.2019.07.08.010
基金項目: 科技部國家重點研發計劃資助項目(2018YFB1107900);國家自然科學基金委員會與中國民用航空局聯合資助項目(U1933129);天津市自然科學基金資助項目(18JCQNJC04100);天津市自然科學基金重點資助項目(19JCZDC39000)
詳細信息
    通訊作者:

    E-mail:ao33@tju.edu.cn

  • 中圖分類號: TG44

Improvement of process window for medium and thicker plates welded by K-TIG

More Information
  • 摘要: 針對穿孔深熔氬弧焊(K-TIG)工藝焊接8 mm厚Q235低碳鋼板時焊接過程不穩定、焊接工藝窗口小等突出問題,首次提出在焊接工件背部鋪加保護焊劑的方法改善焊接過程。采用對接焊的方式,在不開坡口、焊接過程不添加焊絲的情況下,達到單面焊雙面成形的效果。最終成功的采用430~480 A范圍內的直流電流對8 mm厚的Q235低碳鋼進行了焊接,將焊接電流窗口擴大到50 A同時也顯著的提高了焊接過程的穩定性。同時,在擴大焊接電流窗口之后,系統研究了不同焊接電流下焊接接頭的組織性能。研究結果表明:在不同焊接電流下得到的焊接接頭中,組織分布以及力學性能分布呈現出相同的狀態。焊縫區的組織均由鐵素體+珠光體+魏氏組織組成;熔合區由魏氏組織組成;熱影響區由鐵素體+少量的珠光體組成;此外隨著焊接電流的增加,焊接接頭背部的熔寬有略微增加;在焊接接頭中,熔合區處硬度值最高,其次是焊縫區,之后是熱影響區,母材的硬度值最低;焊接接頭最終的拉伸斷裂位置是在熱影響區處。

     

  • 圖  1  焊接過程示意圖

    Figure  1.  Schematic diagram of the welding process

    圖  2  焊接接頭表面外觀形貌。(a)焊接接頭正面成形;(b)焊接接頭背面成形

    Figure  2.  Surface appearance of the welded joints: (a) front forming of welded joints; (b) back forming of welded joints

    圖  3  焊接接頭橫截面形貌

    Figure  3.  Cross section appearance of weld joints

    圖  4  熔寬與焊接電流的關系

    Figure  4.  Relationship between weld width and welding current

    圖  5  焊接接頭不同區域

    Figure  5.  Different areas of welded joints

    圖  6  焊縫區微觀組織。(a)鐵素體+珠光體;(b)魏氏體組織

    Figure  6.  Microstructure of weld zone: (a) ferrite + pearlite; (b) widmanstatten

    圖  7  熔合區微觀組織

    Figure  7.  Microstructure of fusion zone

    圖  8  熱影響區微觀組織

    Figure  8.  Microstructure of heat-affected zone

    圖  9  焊接接頭顯微硬度

    Figure  9.  Microhardness of welded joint

    圖  10  焊接接頭應力?應變曲線

    Figure  10.  Stress?strain curve of welded joints

    表  1  Q235鋼的化學成分(質量分數)%

    Table  1.   Chemical composition of the Q235

    CMnSiSPFe
    0.171.480.350.080.21Bal.
    下載: 導出CSV

    表  2  K-TIG焊接參數

    Table  2.   K-TIG welding parameters

    Welding voltage/
    V
    Welding speed/
    (mm·s?1)
    Distance between tungsten electrode
    and test plate/mm
    Tungsten tip angle /
    (°)
    Type of tungsten
    electrode
    Diameter of tungsten
    electrode/mm
    2052.590Lanthanum tungsten6
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Hui L, Liu S Q, Zhou S, et al. Influence of loading direction and weld reinforcement on fatigue performance of TIG weld seam. J Mater Eng, 2018, 46(2): 122 doi: 10.11868/j.issn.1001-4381.2016.001177

    回麗, 劉思奇, 周松, 等. 載荷方向和焊縫余高對氬弧焊縫疲勞性能的影響. 材料工程, 2018, 46(2):122 doi: 10.11868/j.issn.1001-4381.2016.001177
    [2] Dhib Z, Guermazi N, Gaspérini M, et al. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: microstructure and mechanical properties before and after welding. Mater Sci Eng A, 2016, 656: 130 doi: 10.1016/j.msea.2015.12.088
    [3] Saha M K, Hazra R, Mondal A, et al. Effect of heat input on geometry of austenitic stainless steel weld bead on low carbon steel. J Inst Eng (India)Ser C, 2019, 100(4): 607 doi: 10.1007/s40032-018-0461-7
    [4] Huang Z J, Liu J B, Miao K, et al. Study on the strength of medium steel plate welding. Electr Weld Machine, 2010, 40(7): 49 doi: 10.3969/j.issn.1001-2303.2010.07.011

    黃治軍, 劉吉斌, 繆凱, 等. 中等厚度板埋弧焊焊縫研究. 電焊機, 2010, 40(7):49 doi: 10.3969/j.issn.1001-2303.2010.07.011
    [5] Biswas P, Mandal N R, Saravanan M, et al. Experimental study on square-butt single-pass single-side submerged arc welding of low-carbon microalloyed steel. J Ship Prod Des, 2009, 25(2): 109
    [6] Yin R X. Study on submerged arc welding process for 20Mn23Al No magnetic steel and Q235 low carbon steel. Hot Working Technol, 2011, 40(19): 156 doi: 10.3969/j.issn.1001-3814.2011.19.052

    殷榮幸. 20Mn23Al無磁鋼與Q235低碳鋼的埋弧焊焊接工藝. 熱加工工藝, 2011, 40(19):156 doi: 10.3969/j.issn.1001-3814.2011.19.052
    [7] Zhou S L, Tao J, Guo D L. Study on microstructure and mechanical properties of fine grain TC21 alloy in TIG. J Aeron Mater, 2009, 29(6): 53 doi: 10.3969/j.issn.1005-5053.2009.6.011

    周水亮, 陶軍, 郭德倫. TC21細晶鈦合金TIG焊接接頭組織及力學性能研究. 航空材料學報, 2009, 29(6):53 doi: 10.3969/j.issn.1005-5053.2009.6.011
    [8] Rosellini C, Jarvis L. The keyhole TIG welding process: a valid alternative for valuable metal joints. Weld Int, 2009, 23(8): 616 doi: 10.1080/09507110802543237
    [9] Fei Z Y, Pan Z X, Cuiuri D, et al. Investigation into the viability of K-TIG for joining armour grade quenched and tempered steel. J Manuf Processes, 2018, 32: 482 doi: 10.1016/j.jmapro.2018.03.014
    [10] Feng Y Q, Luo Z, Liu Z M, et al. Keyhole gas tungsten arc welding of AISI 316L stainless steel. Mater Des, 2015, 85: 24 doi: 10.1016/j.matdes.2015.07.011
    [11] Fan W F, Ao S S, Huang Y F, et al. Water cooling keyhole gas tungsten arc welding of HSLA steel. Int J Adv Manuf Technol, 2017, 92(5-8): 2207 doi: 10.1007/s00170-017-0234-0
    [12] Huang Y F, Luo Z, Lei Y C, et al. Dissimilar joining of AISI 304/Q235 steels in keyhole tungsten inert gas welding process. Int J Adv Manuf Technol, 2018, 96(9-12): 4041 doi: 10.1007/s00170-018-1791-6
    [13] Xie Y, Cai Y C, Zhang X, et al. Characterization of keyhole gas tungsten arc welded AISI 430 steel and joint performance optimization. Int J Adv Manuf Technol, 2018, 99(1-4): 347 doi: 10.1007/s00170-018-2257-6
    [14] Olivares E A G, e Silva R H G, Dutra J C. Study of keyhole TIG welding by comparative analysis of two high-productivity torches for joining medium-thickness carbon steel plates. Weld Int, 2017, 31(5): 337 doi: 10.1080/09507116.2016.1218603
    [15] Liang J D, Guo S M, Wahab M A. Localized surface modification on 1018 low-carbon steel by electrolytic plasma process and its impact on corrosion behavior. J Mater Eng Perform, 2014, 23(12): 4187 doi: 10.1007/s11665-014-1165-7
    [16] Zhang R H, Fan D. Weldability of activating flux in A-TIG welding for mild steel. Trans China Weld Inst, 2003, 24(1): 85 doi: 10.3321/j.issn:0253-360X.2003.01.022

    張瑞華, 樊丁. 低碳鋼A-TIG焊活性劑的焊接性. 焊接學報, 2003, 24(1):85 doi: 10.3321/j.issn:0253-360X.2003.01.022
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  1312
  • HTML全文瀏覽量:  884
  • PDF下載量:  42
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-08
  • 刊出日期:  2020-06-01

目錄

    /

    返回文章
    返回