<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高劑量氦離子輻照對新型中子增殖鈹鎢合金表面結構的影響

劉平平 胡文 宋健 賈玉梅 詹倩 萬發榮

劉平平, 胡文, 宋健, 賈玉梅, 詹倩, 萬發榮. 高劑量氦離子輻照對新型中子增殖鈹鎢合金表面結構的影響[J]. 工程科學學報, 2020, 42(1): 128-133. doi: 10.13374/j.issn2095-9389.2019.07.08.008
引用本文: 劉平平, 胡文, 宋健, 賈玉梅, 詹倩, 萬發榮. 高劑量氦離子輻照對新型中子增殖鈹鎢合金表面結構的影響[J]. 工程科學學報, 2020, 42(1): 128-133. doi: 10.13374/j.issn2095-9389.2019.07.08.008
LIU Ping-ping, HU Wen, SONG Jian, JIA Yu-mei, ZHAN Qian, WAN Fa-rong. Effect of high dose helium ion irradiation on the surface microstructure of a new neutron multiplying Be?W alloy[J]. Chinese Journal of Engineering, 2020, 42(1): 128-133. doi: 10.13374/j.issn2095-9389.2019.07.08.008
Citation: LIU Ping-ping, HU Wen, SONG Jian, JIA Yu-mei, ZHAN Qian, WAN Fa-rong. Effect of high dose helium ion irradiation on the surface microstructure of a new neutron multiplying Be?W alloy[J]. Chinese Journal of Engineering, 2020, 42(1): 128-133. doi: 10.13374/j.issn2095-9389.2019.07.08.008

高劑量氦離子輻照對新型中子增殖鈹鎢合金表面結構的影響

doi: 10.13374/j.issn2095-9389.2019.07.08.008
基金項目: 國家自然科學基金資助項目(U1637210,11775018,51601012)
詳細信息
    通訊作者:

    E-mail:ppliu@ustb.edu.cn

  • 中圖分類號: TG146.4;O469

Effect of high dose helium ion irradiation on the surface microstructure of a new neutron multiplying Be?W alloy

More Information
  • 摘要: 為了確保未來核聚變反應堆的氘氚自持燃燒必需采用中子增殖材料來得到合適的氚增值比。金屬鈹被認為是最有前途的核聚變反應堆固態中子倍增材料,但其熔點低,高溫抗輻照腫脹性能差,因此需要尋找和研發具有更高熔點和更耐輻照腫脹的新型中子增殖材料以滿足更先進的聚變堆要求。本研究嘗試提出并制備了一種更高熔點的鈹鎢合金(Be12W),通過X射線和掃描電子顯微鏡對它的相組成和表面結構進行分析。對新型鈹鎢合金進行高劑量的氦離子輻照,發現合金表面一次起泡的平均尺寸約為0.8 μm,面密度約為2.4×107 cm?2,而二次起泡的平均尺寸約為80 nm,面密度約為1.28×108 cm?2。分析氦輻照引起的表面起泡及其機制,并與純鈹和鈹鈦合金表面起泡的情況進行了對比。

     

  • 圖  1  鈹鎢合金相圖以及Be12W的結構示意圖

    Figure  1.  Phase diagram of Be?W binary alloy and structure schematic of Be12W

    圖  2  SRIM計算的氦離子在鈹鎢合金中的分布

    Figure  2.  Content profile of helium in the Be?W alloy calculated by SRIM

    圖  3  鈹鎢合金表面結構(a)及局部放大圖(b)

    Figure  3.  Surface structure of Be?W alloy (a) and partial enlarged morphology (b)

    圖  4  鈹鎢合金的相組成

    Figure  4.  Phase composition of Be?W alloy

    圖  5  氦離子輻照后鈹鎢合金的表面結構.(a)二次起泡;(b)部分一次起泡破裂

    Figure  5.  Surface structure of helium ion irradiated Be?W alloy (a) and broken of the first blister (b)

    圖  6  氦離子輻照下材料表面起泡示意圖

    Figure  6.  Schematic diagram of materials surface blistering under helium ion irradiation

    圖  7  氦離子輻照后鈹鎢合金的表面起泡。(a)表面起泡尺寸分布;(b)表面2次起泡尺寸分布

    Figure  7.  Surface blister of helium ion irradiated Be?W alloy: (a) size distribution of blister on Be?W alloy surface; (b) size distribution of secondary blister on the surface

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Freidberg J. Plasma Physics and Fusion Energy. Beijing: Science Press, 2010

    Freidberg Jeffrey. 等離子體物理與聚變能. 北京: 科學出版社, 2010
    [2] Wang N Y. Fusion Energy and Its Future. Beijing: Tsinghua University Press, 2001

    王乃彥. 聚變能及其未來. 北京: 清華大學出版社, 2001
    [3] Rebut P H. ITER: the first experimental fusion reactor. Fusion Eng Des, 1995, 30(1-2): 85 doi: 10.1016/0920-3796(94)00403-T
    [4] Barabash V, Peacock A, Fabritsiev S, et al. Materials challenges for ITER–current status and future activities. J Nucl Mater, 2007, 367-370: 21 doi: 10.1016/j.jnucmat.2007.03.017
    [5] Hao J K. Fusion Reactor Materials. Beijing: Chemical Industry Press, 2007

    郝嘉琨. 聚變堆材料. 北京: 化學工業出版社, 2007
    [6] Yu J N. Irradiation Effect of Materials. Beijing: Chemical Industry Press, 2007

    郁金南. 材料輻照效應. 北京: 化學工業出版社, 2007
    [7] Wan F R. Irradiation Damage of Metal Materials. Beijing: Science Press, 1993

    萬發榮. 金屬材料的輻照損傷. 北京: 科學出版社, 1993
    [8] Raffray A R, Akiba M, Chuyanov V, et al. Breeding blanket concepts for fusion and materials requirements. J Nucl Mater, 2002, 307-311: 21 doi: 10.1016/S0022-3115(02)01174-1
    [9] Vladimirov P, Bachurin D, Borodin V, et al. Current status of beryllium materials for fusion blanket applications. Fusion Sci Technol, 2014, 66(1): 28 doi: 10.13182/FST13-776
    [10] Giancarli L M, Abdou M, Campbell D J, et al. Overview of the ITER TBM Program. Fusion Eng Des, 2012, 87(5-6): 395 doi: 10.1016/j.fusengdes.2011.11.005
    [11] Feng K M, Pan C H, Zhang G S, et al. Progress on design and R&D for helium-cooled ceramic breeder TBM in China. Fusion Eng Des, 2012, 87(7-8): 1138 doi: 10.1016/j.fusengdes.2012.02.098
    [12] Kawamura H, Takahashi H, Yoshida N, et al. Application of beryllium intermetallic compounds to neutron multiplier of fusion blanket. Fusion Eng Des, 2002, 61-62: 391 doi: 10.1016/S0920-3796(02)00106-0
    [13] Kurinskiy P, Moeslang A, Chakin V, et al. Characteristics of microstructure, swelling and mechanical behaviour of titanium beryllide samples after high-dose neutron irradiation at 740 and 873 K. Fusion Eng Des, 2013, 88(9-10): 2198 doi: 10.1016/j.fusengdes.2013.05.084
    [14] Nakamichi M, Kim J H. Homogenization treatment to stabilize the compositional structure of beryllide pebbles. J Nucl Mater, 2013, 440(1-3): 530 doi: 10.1016/j.jnucmat.2013.02.070
    [15] Nakamichi M, Kim J H. Fabrication and hydrogen generation reaction with water vapor of prototypic pebbles of binary beryllides as advanced neutron multiplier. Fusion Eng Des, 2015, 98-99: 1838 doi: 10.1016/j.fusengdes.2015.04.026
    [16] Kim J H, Nakamichi M. Optimization of synthesis conditions for plasma-sintered beryllium–titanium intermetallic compounds. J Alloys Compd, 2013, 577: 90 doi: 10.1016/j.jallcom.2013.04.185
    [17] Nakamichi M, Kim J H, Munakata K, et al. Preliminary characterization of plasma-sintered beryllides as advanced neutron multipliers. J Nucl Mater, 2013, 442(1-3, Suppl 1): S465 doi: 10.1016/j.jnucmat.2012.11.011
    [18] Liu P P, Zhan Q, Fu Z Y, et al. Surface and internal microstructure damage of He–ion–irradiated CLAM steel studied by cross-sectional transmission electron microscopy. J Alloys Compd, 2015, 649: 859 doi: 10.1016/j.jallcom.2015.07.177
    [19] Zhang C H, Chen K Q, Wang Y S, et al. Formation of bubbles in helium implanted 316L stainless steel at temperatures between 25 and 550 °C. J Nucl Mater, 1997, 245(2-3): 210 doi: 10.1016/S0022-3115(97)00007-X
    [20] Zhang C H, Chen K Q, Wang Y S, et al. The formation of helium bubbles in 316L stainless steel irradiated with 2.5 MeV He+ ions. Acta Phys Sin, 1997, 46(9): 1774 doi: 10.3321/j.issn:1000-3290.1997.09.017

    張崇宏, 陳克勤, 王引書, 等. 2.5 MeV的He+離子輻照316L不銹鋼中氦泡的形核與生長研究. 物理學報, 1997, 46(9):1774 doi: 10.3321/j.issn:1000-3290.1997.09.017
    [21] Trinkaus H. Modeling of helium effects in metals: high temperature embrittlement. J Nucl Mater, 1985, 133: 105
    [22] Trinkaus H. On the modeling of the high-temperature embrittlement of metals containing helium. J Nucl Mater, 1983, 118(1): 39 doi: 10.1016/0022-3115(83)90177-0
    [23] Li X C, Liu Y N, Yu Y, et al. Helium defects interactions and mechanism of helium bubble growth in tungsten: a molecular dynamics simulation. J Nucl Mater, 2014, 451(1-3): 356 doi: 10.1016/j.jnucmat.2014.04.022
    [24] Trinkaus H, Singh B N. Helium accumulation in metals during irradiation: where do we stand? J Nucl Mater, 2003, 323(2-3): 229 doi: 10.1016/j.jnucmat.2003.09.001
    [25] Fu C C, Willaime F. Ab initio study of helium in α-Fe: dissolution, migration, and clustering with vacancies. Phys Rev B, 2005, 72(6): 064117 doi: 10.1103/PhysRevB.72.064117
    [26] Evans J H. An interbubble fracture mechanism of blister formation on helium-irradiated metals. J Nucl Mater, 1977, 68(2): 129 doi: 10.1016/0022-3115(77)90232-X
    [27] Gusev V M, Guseva M I, Martynenko Y V, et al. Helium blistering at high irradiation doses. J Nucl Mater, 1979, 85-86: 1101 doi: 10.1016/0022-3115(79)90407-0
    [28] Liu Y Z, Li B S, Zhang L. High-temperature annealing induced He bubble evolution in low energy He ion implanted 6H–SiC. Chin Phys Lett, 2017, 34(5): 052801 doi: 10.1088/0256-307X/34/5/052801
    [29] Daghbouj N, Li B S, Karlik M, et al. 6H–SiC blistering efficiency as a function of the hydrogen implantation fluence. Appl Surf Sci, 2019, 466: 141 doi: 10.1016/j.apsusc.2018.10.005
  • 加載中
圖(7)
計量
  • 文章訪問數:  1293
  • HTML全文瀏覽量:  684
  • PDF下載量:  27
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-08
  • 刊出日期:  2020-01-01

目錄

    /

    返回文章
    返回