[1] |
Freidberg J. Plasma Physics and Fusion Energy. Beijing: Science Press, 2010Freidberg Jeffrey. 等離子體物理與聚變能. 北京: 科學出版社, 2010
|
[2] |
Wang N Y. Fusion Energy and Its Future. Beijing: Tsinghua University Press, 2001王乃彥. 聚變能及其未來. 北京: 清華大學出版社, 2001
|
[3] |
Rebut P H. ITER: the first experimental fusion reactor. Fusion Eng Des, 1995, 30(1-2): 85 doi: 10.1016/0920-3796(94)00403-T
|
[4] |
Barabash V, Peacock A, Fabritsiev S, et al. Materials challenges for ITER–current status and future activities. J Nucl Mater, 2007, 367-370: 21 doi: 10.1016/j.jnucmat.2007.03.017
|
[5] |
Hao J K. Fusion Reactor Materials. Beijing: Chemical Industry Press, 2007郝嘉琨. 聚變堆材料. 北京: 化學工業出版社, 2007
|
[6] |
Yu J N. Irradiation Effect of Materials. Beijing: Chemical Industry Press, 2007郁金南. 材料輻照效應. 北京: 化學工業出版社, 2007
|
[7] |
Wan F R. Irradiation Damage of Metal Materials. Beijing: Science Press, 1993萬發榮. 金屬材料的輻照損傷. 北京: 科學出版社, 1993
|
[8] |
Raffray A R, Akiba M, Chuyanov V, et al. Breeding blanket concepts for fusion and materials requirements. J Nucl Mater, 2002, 307-311: 21 doi: 10.1016/S0022-3115(02)01174-1
|
[9] |
Vladimirov P, Bachurin D, Borodin V, et al. Current status of beryllium materials for fusion blanket applications. Fusion Sci Technol, 2014, 66(1): 28 doi: 10.13182/FST13-776
|
[10] |
Giancarli L M, Abdou M, Campbell D J, et al. Overview of the ITER TBM Program. Fusion Eng Des, 2012, 87(5-6): 395 doi: 10.1016/j.fusengdes.2011.11.005
|
[11] |
Feng K M, Pan C H, Zhang G S, et al. Progress on design and R&D for helium-cooled ceramic breeder TBM in China. Fusion Eng Des, 2012, 87(7-8): 1138 doi: 10.1016/j.fusengdes.2012.02.098
|
[12] |
Kawamura H, Takahashi H, Yoshida N, et al. Application of beryllium intermetallic compounds to neutron multiplier of fusion blanket. Fusion Eng Des, 2002, 61-62: 391 doi: 10.1016/S0920-3796(02)00106-0
|
[13] |
Kurinskiy P, Moeslang A, Chakin V, et al. Characteristics of microstructure, swelling and mechanical behaviour of titanium beryllide samples after high-dose neutron irradiation at 740 and 873 K. Fusion Eng Des, 2013, 88(9-10): 2198 doi: 10.1016/j.fusengdes.2013.05.084
|
[14] |
Nakamichi M, Kim J H. Homogenization treatment to stabilize the compositional structure of beryllide pebbles. J Nucl Mater, 2013, 440(1-3): 530 doi: 10.1016/j.jnucmat.2013.02.070
|
[15] |
Nakamichi M, Kim J H. Fabrication and hydrogen generation reaction with water vapor of prototypic pebbles of binary beryllides as advanced neutron multiplier. Fusion Eng Des, 2015, 98-99: 1838 doi: 10.1016/j.fusengdes.2015.04.026
|
[16] |
Kim J H, Nakamichi M. Optimization of synthesis conditions for plasma-sintered beryllium–titanium intermetallic compounds. J Alloys Compd, 2013, 577: 90 doi: 10.1016/j.jallcom.2013.04.185
|
[17] |
Nakamichi M, Kim J H, Munakata K, et al. Preliminary characterization of plasma-sintered beryllides as advanced neutron multipliers. J Nucl Mater, 2013, 442(1-3, Suppl 1): S465 doi: 10.1016/j.jnucmat.2012.11.011
|
[18] |
Liu P P, Zhan Q, Fu Z Y, et al. Surface and internal microstructure damage of He–ion–irradiated CLAM steel studied by cross-sectional transmission electron microscopy. J Alloys Compd, 2015, 649: 859 doi: 10.1016/j.jallcom.2015.07.177
|
[19] |
Zhang C H, Chen K Q, Wang Y S, et al. Formation of bubbles in helium implanted 316L stainless steel at temperatures between 25 and 550 °C. J Nucl Mater, 1997, 245(2-3): 210 doi: 10.1016/S0022-3115(97)00007-X
|
[20] |
Zhang C H, Chen K Q, Wang Y S, et al. The formation of helium bubbles in 316L stainless steel irradiated with 2.5 MeV He+ ions. Acta Phys Sin, 1997, 46(9): 1774 doi: 10.3321/j.issn:1000-3290.1997.09.017張崇宏, 陳克勤, 王引書, 等. 2.5 MeV的He+離子輻照316L不銹鋼中氦泡的形核與生長研究. 物理學報, 1997, 46(9):1774 doi: 10.3321/j.issn:1000-3290.1997.09.017
|
[21] |
Trinkaus H. Modeling of helium effects in metals: high temperature embrittlement. J Nucl Mater, 1985, 133: 105
|
[22] |
Trinkaus H. On the modeling of the high-temperature embrittlement of metals containing helium. J Nucl Mater, 1983, 118(1): 39 doi: 10.1016/0022-3115(83)90177-0
|
[23] |
Li X C, Liu Y N, Yu Y, et al. Helium defects interactions and mechanism of helium bubble growth in tungsten: a molecular dynamics simulation. J Nucl Mater, 2014, 451(1-3): 356 doi: 10.1016/j.jnucmat.2014.04.022
|
[24] |
Trinkaus H, Singh B N. Helium accumulation in metals during irradiation: where do we stand? J Nucl Mater, 2003, 323(2-3): 229 doi: 10.1016/j.jnucmat.2003.09.001
|
[25] |
Fu C C, Willaime F. Ab initio study of helium in α-Fe: dissolution, migration, and clustering with vacancies. Phys Rev B, 2005, 72(6): 064117 doi: 10.1103/PhysRevB.72.064117
|
[26] |
Evans J H. An interbubble fracture mechanism of blister formation on helium-irradiated metals. J Nucl Mater, 1977, 68(2): 129 doi: 10.1016/0022-3115(77)90232-X
|
[27] |
Gusev V M, Guseva M I, Martynenko Y V, et al. Helium blistering at high irradiation doses. J Nucl Mater, 1979, 85-86: 1101 doi: 10.1016/0022-3115(79)90407-0
|
[28] |
Liu Y Z, Li B S, Zhang L. High-temperature annealing induced He bubble evolution in low energy He ion implanted 6H–SiC. Chin Phys Lett, 2017, 34(5): 052801 doi: 10.1088/0256-307X/34/5/052801
|
[29] |
Daghbouj N, Li B S, Karlik M, et al. 6H–SiC blistering efficiency as a function of the hydrogen implantation fluence. Appl Surf Sci, 2019, 466: 141 doi: 10.1016/j.apsusc.2018.10.005
|