<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

粉末冶金在高熵材料中的應用

何春靜 劉雄軍 張盼 王輝 吳淵 蔣雖合 呂昭平

何春靜, 劉雄軍, 張盼, 王輝, 吳淵, 蔣雖合, 呂昭平. 粉末冶金在高熵材料中的應用[J]. 工程科學學報, 2019, 41(12): 1501-1511. doi: 10.13374/j.issn2095-9389.2019.07.04.035
引用本文: 何春靜, 劉雄軍, 張盼, 王輝, 吳淵, 蔣雖合, 呂昭平. 粉末冶金在高熵材料中的應用[J]. 工程科學學報, 2019, 41(12): 1501-1511. doi: 10.13374/j.issn2095-9389.2019.07.04.035
HE Chun-jing, LIU Xiong-jun, ZHANG Pan, WANG Hui, WU Yuan, JIANG Sui-he, LU Zhao-ping. Applications of powder metallurgy technology in high-entropy materials[J]. Chinese Journal of Engineering, 2019, 41(12): 1501-1511. doi: 10.13374/j.issn2095-9389.2019.07.04.035
Citation: HE Chun-jing, LIU Xiong-jun, ZHANG Pan, WANG Hui, WU Yuan, JIANG Sui-he, LU Zhao-ping. Applications of powder metallurgy technology in high-entropy materials[J]. Chinese Journal of Engineering, 2019, 41(12): 1501-1511. doi: 10.13374/j.issn2095-9389.2019.07.04.035

粉末冶金在高熵材料中的應用

doi: 10.13374/j.issn2095-9389.2019.07.04.035
基金項目: 國家自然科學基金資助項目(11790293,51671021,51971017)
詳細信息
    通訊作者:

    E-mail:wanghui@ustb.edu.cn

  • 中圖分類號: TG146.2

Applications of powder metallurgy technology in high-entropy materials

More Information
  • 摘要: 高熵材料是近年來出現的一種新型材料,具有高強度、高硬度、良好耐腐蝕和優異的高溫組織穩定性等性能,在航空航天、高溫以及先進核能等領域展現了廣闊的應用前景,引起國際材料領域的廣泛關注,相關研究也取得了很大進展。粉末冶金作為一種高性能金屬基和陶瓷復合材料的先進制備技術,可以獲得納米晶和過飽和固溶體等亞穩材料,同時也可用于傳統熔煉法較難制備的具有特殊結構和性能的材料,近些年來,粉末冶金技術在高熵材料制備中得到廣泛應用。本文從高熵材料的應用理論出發,針對目前高熵材料粉體制備方法、塊體成型以及粉末冶金制備的典型高熵材料三個方面予以綜述,著重闡述了高熵材料的力學性能和其變形行為特點,同時展望了高熵材料的未來發展趨勢。

     

  • 圖  1  八元高熵合金納米顆粒的能量色散X射線能譜元素分布圖像[31]

    Figure  1.  Energy dispersive X-ray spectroscopy (EDX) element distribution images of HEA nanoparticles comprising eight dissimilar elements[31]

    圖  2  CrMnFeCoNi HEAs的拉伸曲線[25]

    Figure  2.  Tensile curves of CrMnFeCoNi HEAs[25]

    圖  3  (a) CoCrFeNi 高熵合金 透射明場像;(b) 5%Y2O3?CoCrFeNi 高熵合金透射明場像;(c) 5%Y2O3?CoCrFeNi 高熵合金的掃描透射電子顯微鏡?高角度環形暗場像;(d) 是沿著(c) 圖的白色箭頭的能量色散X射線能譜[55]

    Figure  3.  (a) TEM bright filed image of CoCrFeNi HEA; (b) TEM bright filed image of 5% Y2O3?CoCrFeNi HEA; (c) high angle ring dark field image-scanning transmission electron microscope (HAADF-STEM) image of 5%Y2O3?CoCrFeNi HEA after SPS; (d) EDX of the section along the white arrow drawn in Fig.4(c)[55]

    圖  4  (a) 樣品的拉伸曲線;(b) 試樣斷口的韌窩狀形貌;(c)試樣的光滑斷口側視圖[16]

    Figure  4.  (a) Engineering stress–strain tensile curves; (b) fracture surface morphology showing ductile dimples in SPSed sample; (c) side view of the polished fracture surface of SPS sample with uncracked oxides present[16]

    圖  5  高熵金屬二硼化物原子結構示意圖。這里M1、M2、M3、M4和M5分別代表五種不同的過渡金屬(從Zr、Hf、Ti、Ta、Nb、W、Mo中選擇)[75]

    Figure  5.  Schematic illustration of the atomic structure of high-entropy metal diborides. Here M1, M2, M3, M4, and M5 represent 5 different transition metals (selected from Zr, Hf, Ti, Ta, Nb, W, and Mo)[75]

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
    [2] Yeh J W. Alloy design strategies and future trends in high-entropy alloys. JOM, 2013, 65(12): 1759 doi: 10.1007/s11837-013-0761-6
    [3] Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345(6201): 1153 doi: 10.1126/science.1254581
    [4] Ma S G, Zhang S F, Qiao J W, et al. Superior high tensile elongation of a single-crystal FeNiCoCrAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics, 2014, 54: 104 doi: 10.1016/j.intermet.2014.05.018
    [5] Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J Alloys Compd, 2011, 509(20): 6043 doi: 10.1016/j.jallcom.2011.02.171
    [6] Han Z D, Chen N, Zhao S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 2017, 84: 153 doi: 10.1016/j.intermet.2017.01.007
    [7] Feuerbacher M, Heidelmann M, Thomas C. Hexagonal high-entropy alloys. Mater Res Lett, 2015, 3(1): 1 doi: 10.1080/21663831.2014.951493
    [8] He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater, 2014, 62: 105 doi: 10.1016/j.actamat.2013.09.037
    [9] Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater Chem Phys, 2012, 132(2-3): 233 doi: 10.1016/j.matchemphys.2011.11.021
    [10] Hu Y, Chen X R, Wu S S. Physical Chemistry (Volume 1). 2nd Ed. Beijing: People's Education Press, 1982.

    胡英, 陳學讓, 吳樹森. 物理化學(上冊). 2版. 北京: 人民教育出版社, 1982
    [11] Wang S Q, Chen K H, Chen L, et al. Effect of Al and Si additions on microstructure and mechanical properties of TiN coatings. J Cent South Univ Technol, 2011, 18(2): 310 doi: 10.1007/s11771-011-0696-4
    [12] Nagase T, Rack P D, Noh J H, et al. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics, 2015, 59: 32 doi: 10.1016/j.intermet.2014.12.007
    [13] Zhang F X, Zhao S J, Jin K, et al. Local structure and short-range order in a NiCoCr solid solution alloy. Phys Rev Lett, 2017, 118(20): 205501 doi: 10.1103/PhysRevLett.118.205501
    [14] Ding J, Yu Q, Asta M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proc Nat Acad Sci USA, 2018, 115(36): 8919 doi: 10.1073/pnas.1808660115
    [15] Yim D, Jang M J, Bae J W, et al. Compaction behavior of water-atomized CoCrFeMnNi high-entropy alloy powders. Mater Chem Phys, 2018, 210: 95 doi: 10.1016/j.matchemphys.2017.06.013
    [16] Moravcik I, Gouvea L, Hornik V, et al. Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scripta Mater, 2018, 157: 24 doi: 10.1016/j.scriptamat.2018.07.034
    [17] Braeckman B R, Boydens F, Hidalgo H, et al. High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films, 2015, 580: 71 doi: 10.1016/j.tsf.2015.02.070
    [18] Xiang S, Luan H W, Wu J, et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. J Alloys Compd, 2019, 773: 387 doi: 10.1016/j.jallcom.2018.09.235
    [19] Chen T K, Shun T T, Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf Coat Technol, 2004, 188-189: 193 doi: 10.1016/j.surfcoat.2004.08.023
    [20] Lv Y K, Hu R Y, Yao Z H, et al. Cooling rate effect on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys. Mater Des, 2017, 132: 392 doi: 10.1016/j.matdes.2017.07.008
    [21] Huo W Y, Zhou H, Fang F, et al. Microstructure and mechanical properties of CoCrFeNiZrx eutectic high-entropy alloys. Mater Des, 2017, 134: 226 doi: 10.1016/j.matdes.2017.08.030
    [22] Seifi M, Li D Y, Yong Z, et al. Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys. JOM, 2015, 67(10): 2288 doi: 10.1007/s11837-015-1563-9
    [23] Yang C C, Chau J L H, Weng C J, et al. Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process. Mater Chem Phys, 2017, 202: 151 doi: 10.1016/j.matchemphys.2017.09.014
    [24] Kao Y F, Chen T J, Chen S K, et al. Microstructure and mechanical property of as-cast, -homogenized, and-deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys. J Alloys Compd, 2009, 488(1): 57 doi: 10.1016/j.jallcom.2009.08.090
    [25] Liu Y, Wang J S, Fang Q H, et al. Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics, 2016, 68: 16 doi: 10.1016/j.intermet.2015.08.012
    [26] Zhang K B, Fu Z Y, Zhang J Y, et al. Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J Alloys Compd, 2010, 495(1): 33 doi: 10.1016/j.jallcom.2009.12.010
    [27] Fang S C, Chen W P, Fu Z Q. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater Des, 2014, 54: 973 doi: 10.1016/j.matdes.2013.08.099
    [28] Pradeep K G, Wanderka N, Choi P, et al. Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Mater, 2013, 61(12): 4696 doi: 10.1016/j.actamat.2013.04.059
    [29] Long Y, Liang X B, Su K, et al. A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties. J Alloys Compd, 2019, 780: 607 doi: 10.1016/j.jallcom.2018.11.318
    [30] Singh M P, Srivastava C. Synthesis and electron microscopy of high entropy alloy nanoparticles. Mater Lett, 2015, 160: 419 doi: 10.1016/j.matlet.2015.08.032
    [31] Yao Y G, Huang Z N, Xie P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359(6383): 1489 doi: 10.1126/science.aan5412
    [32] Bu L Z, Zhang N, Guo S J, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, 2016, 354(6318): 1410 doi: 10.1126/science.aah6133
    [33] Frey N A, Peng S, Cheng K, et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev, 2009, 38(9): 2532 doi: 10.1039/b815548h
    [34] Chen P C, Liu M, Du J S, et al. Interface and heterostructure design in polyelemental nanoparticles. Science, 2019, 363(6430): 959 doi: 10.1126/science.aav4302
    [35] Chen P C, Liu X L, Hedrick J L, et al. Polyelemental nanoparticle libraries. Science, 2016, 352(6293): 1565 doi: 10.1126/science.aaf8402
    [36] Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci, 2006, 41(3): 763 doi: 10.1007/s10853-006-6555-2
    [37] Varalakshmi S, Rao G A, Kamaraj M, et al. Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. J Mater Sci, 2010, 45(19): 5158 doi: 10.1007/s10853-010-4246-5
    [38] Liu B, Wang J S, Liu Y, et al. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics, 2016, 75: 25 doi: 10.1016/j.intermet.2016.05.006
    [39] Du C C, Jin S B, Fang Y, et al. Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance. Nat Commun, 2018, 9(1): 5389 doi: 10.1038/s41467-018-07712-x
    [40] Youssef K M, Scattergood R O, Murty K L, et al. Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scripta Mater, 2006, 54(2): 251 doi: 10.1016/j.scriptamat.2005.09.028
    [41] Xin S W, Zhang M, Yang T T, et al. Ultrahard bulk nanocrystalline VNbMoTaW high-entropy alloy. J Alloys Compd, 2018, 769: 597 doi: 10.1016/j.jallcom.2018.07.331
    [42] Pohan R M, Gwalani B, Lee J, et al. Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy. Mater Chem Phys, 2018, 210: 62 doi: 10.1016/j.matchemphys.2017.09.013
    [43] Fu Z Q, Chen W P, Wen H M, et al. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5high-entropy alloy. Acta Mater, 2016, 107: 59 doi: 10.1016/j.actamat.2016.01.050
    [44] Senkov O N, Semiatin S L. Microstructure and properties of a refractory high-entropy alloy after cold working. J Alloys Compd, 2015, 649: 1110 doi: 10.1016/j.jallcom.2015.07.209
    [45] Gao N. Preparation, Microstructure and Mechanical Properties of Powder Metallurgy TiVNbTa(Al) Refractory High Entropy Alloy[Dissertation]. Guangzhou: South China University of Technology, 2018

    高楠. 粉末冶金TiVNbTa(Al)難熔高熵合金的制備、顯微組織及力學性能[學位論文]. 廣州: 華南理工大學, 2018
    [46] Yang X, Zhang Y, Liaw P K. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng, 2012, 36(6): 292
    [47] Youssef K M, Zaddach A J, Niu C N, et al. A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater Res Lett, 2015, 3(2): 95 doi: 10.1080/21663831.2014.985855
    [48] Maulik O, Kumar V. Synthesis of AlFeCuCrMgx (x=0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater Charact, 2015, 110: 116 doi: 10.1016/j.matchar.2015.10.025
    [49] Gilman P S, Benjamin J S. Mechanical alloying. Ann Rev Mater Sci, 1983, 13(1): 279 doi: 10.1146/annurev.ms.13.080183.001431
    [50] Zhou X S, Li C, Yu L M, et al. Effects of Ti addition on microstructure and mechanical property of spark-plasma-sintered transformable 9Cr-ODS steels. Fusion Eng Des, 2018, 135: 88 doi: 10.1016/j.fusengdes.2018.07.019
    [51] Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544(7651): 460 doi: 10.1038/nature22032
    [52] Dobe? F, Hadraba H, Chlup Z, et al. Compressive creep behavior of an oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloy. Mater Sci Eng A, 2018, 732: 99 doi: 10.1016/j.msea.2018.06.108
    [53] de Castro V, Leguey T, Monge M A, et al. Mechanical dispersion of Y2O3 nanoparticles in steel EUROFER 97: process and optimisation. J Nucl Mater, 2003, 322(2-3): 228 doi: 10.1016/S0022-3115(03)00330-1
    [54] Zinkle S J, Ghoniem N M. Operating temperature windows for fusion reactor structural materials. Fusion Eng Des, 2000, 51-52: 55 doi: 10.1016/S0920-3796(00)00320-3
    [55] Jia B, Liu X J, Wang H, et al. Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y2O3 dispersion. Sci China Technol Sci, 2018, 61(2): 179 doi: 10.1007/s11431-017-9115-5
    [56] Ukai S, Harada M, Okada H, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. J Nucl Mater, 1993, 204: 65 doi: 10.1016/0022-3115(93)90200-I
    [57] Okuda T, Fujiwara M. Dispersion behaviour of oxide particles in mechanically alloyed ODS steel. J Mater Sci Lett, 1995, 14(22): 1600 doi: 10.1007/BF00455428
    [58] Hadraba H, Chlup Z, Dlouhy A, et al. Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater Sci Eng A, 2017, 689: 252 doi: 10.1016/j.msea.2017.02.068
    [59] Gwalani B, Pohan R M, Lee J, et al. High-entropy alloy strengthened by in situ formation of entropy-stabilized nano-dispersoids. Sci Rep, 2018, 8(1): 14085 doi: 10.1038/s41598-018-32552-6
    [60] Gwalani B, Pohan R M, Waseem O A, et al. Strengthening of Al0.3CoCrFeMnNi-based ODS high entropy alloys with incremental changes in the concentration of Y2O3. Scripta Mater, 2019, 162: 477 doi: 10.1016/j.scriptamat.2018.12.021
    [61] Dou P, Kimura A, Kasada R, et al. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition. J Nucl Mater, 2014, 444(1-3): 441 doi: 10.1016/j.jnucmat.2013.10.028
    [62] Dou P, Kimura A, Kasada R, et al. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition. J Nucl Mater, 2017, 485: 189 doi: 10.1016/j.jnucmat.2016.12.001
    [63] Yang S F, Zhang Y, Yan X, et al. Deformation twins and interface characteristics of nano-Al2O3 reinforced Al0.4FeCrCo1.5NiTi0.3 high entropy alloy composites. Mater Chem Phys, 2018, 210: 240 doi: 10.1016/j.matchemphys.2017.11.037
    [64] Fu Z Q, Jiang L, Wardini J L, et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength. Sci Adv, 2018, 4(10): 8712 doi: 10.1126/sciadv.aat8712
    [65] Rogal ?, Kalita D, Tarasek A, et al. Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J Alloys Compd, 2017, 708: 344 doi: 10.1016/j.jallcom.2017.02.274
    [66] Wang J W, Liu B, Liu C T, et al. Strengthening mechanism in a high-strength carbon-containing powder metallurgical high entropy alloy. Intermetallics, 2018, 102: 58 doi: 10.1016/j.intermet.2018.07.016
    [67] Dong J X, Xie X S, Thompson R G. The influence of sulfur on stress-rupture fracture in inconel 718 superalloys. Metall Mater Trans A, 2000, 31(9): 2135 doi: 10.1007/s11661-000-0131-1
    [68] Chen K, Zhao L R, Tse J S. Sulfur embrittlement on γ/γ′ interface of Ni-base single crystal superalloys. Acta Mater, 2003, 51(4): 1079 doi: 10.1016/S1359-6454(02)00512-8
    [69] Zhang A J, Han J S, Su B, et al. A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy. Mater Sci Eng A, 2018, 731: 36 doi: 10.1016/j.msea.2018.06.030
    [70] Opeka M M, Talmy I G, Wuchina E J, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc, 1999, 19(13-14): 2405 doi: 10.1016/S0955-2219(99)00129-6
    [71] Zhang X H, Luo X G, Han J C, et al. Electronic structure, elasticity and hardness of diborides of zirconium and hafnium: First principles calculations. Comput Mater Sci, 2008, 44(2): 411 doi: 10.1016/j.commatsci.2008.04.002
    [72] Fahrenholtz W G, Hilmas G E. Ultra-high temperature ceramics: materials for extreme environments. Scripta Mater, 2017, 129: 94 doi: 10.1016/j.scriptamat.2016.10.018
    [73] Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun, 2015, 6: 8485 doi: 10.1038/ncomms9485
    [74] Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun, 2018, 9(1): 980 doi: 10.1038/s41467-018-02982-x
    [75] Gild J, Zhang Y Y, Harrington T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep, 2016, 6: 37946 doi: 10.1038/srep37946
    [76] Zhou J Y, Zhang J Y, Zhang F, et al. High-entropy carbide: A novel class of multicomponent ceramics. Ceram Int, 2018, 44(17): 22014 doi: 10.1016/j.ceramint.2018.08.100
    [77] Castle E, Csanádi T, Grasso S, et al. Processing and properties of high-entropy ultra-high temperature carbides. Sci Rep, 2018, 8(1): 8609 doi: 10.1038/s41598-018-26827-1
    [78] Yan X L, Constantin L, Lu Y F, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramics with low thermal conductivity. J Am Ceram Soc, 2018, 101(10): 4486 doi: 10.1111/jace.15779
    [79] Gao X Y, Lu Y Z. Laser 3D printing of CoCrFeMnNi high-entropy alloy. Mater Lett, 2019, 236: 77 doi: 10.1016/j.matlet.2018.10.084
    [80] Gordon T R, Schaak R E. Synthesis of hybrid Au-In2O3 nanoparticles exhibiting dual plasmonic resonance. Chem Mater, 2014, 26(20): 5900 doi: 10.1021/cm502396d
    [81] Shipway A N, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem, 2000, 1(1): 18 doi: 10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO;2-L
    [82] Lei Z F, Liu X J, Wang H, et al. Development of advanced materials via entropy engineering. Scripta Mater, 2019, 165: 164 doi: 10.1016/j.scriptamat.2019.02.015
  • 加載中
圖(5)
計量
  • 文章訪問數:  3228
  • HTML全文瀏覽量:  2175
  • PDF下載量:  231
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-04
  • 刊出日期:  2019-12-01

目錄

    /

    返回文章
    返回