<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于氮化鈦–石墨烯的傳感器對多巴胺和尿酸的電化學檢測

楊濤 馮嬌 陳俊紅 周國治 侯新梅

楊濤, 馮嬌, 陳俊紅, 周國治, 侯新梅. 基于氮化鈦–石墨烯的傳感器對多巴胺和尿酸的電化學檢測[J]. 工程科學學報, 2019, 41(12): 1536-1542. doi: 10.13374/j.issn2095-9389.2019.07.04.034
引用本文: 楊濤, 馮嬌, 陳俊紅, 周國治, 侯新梅. 基于氮化鈦–石墨烯的傳感器對多巴胺和尿酸的電化學檢測[J]. 工程科學學報, 2019, 41(12): 1536-1542. doi: 10.13374/j.issn2095-9389.2019.07.04.034
YANG Tao, FENG Jiao, CHEN Jun-hong, CHOU Kuo-Chih, HOU Xin-mei. Electrochemical detection of dopamine and uric acid using a titanium nitride-graphene composite sensor[J]. Chinese Journal of Engineering, 2019, 41(12): 1536-1542. doi: 10.13374/j.issn2095-9389.2019.07.04.034
Citation: YANG Tao, FENG Jiao, CHEN Jun-hong, CHOU Kuo-Chih, HOU Xin-mei. Electrochemical detection of dopamine and uric acid using a titanium nitride-graphene composite sensor[J]. Chinese Journal of Engineering, 2019, 41(12): 1536-1542. doi: 10.13374/j.issn2095-9389.2019.07.04.034

基于氮化鈦–石墨烯的傳感器對多巴胺和尿酸的電化學檢測

doi: 10.13374/j.issn2095-9389.2019.07.04.034
基金項目: 國家自然科學基金優秀青年基金資助項目(51522402);博士后創新人才支持計劃資助項目(BX20180034);國家自然科學基金青年基金資助項目(51902020);博士后科學基金資助項目(2018M641192);中央高校基本科研業務費資助項目(FRF-TP-18-045A1)
詳細信息
    通訊作者:

    E-mail: houxinmeiustb@ustb.edu.cn

  • 中圖分類號: O657.1

Electrochemical detection of dopamine and uric acid using a titanium nitride-graphene composite sensor

More Information
  • 摘要: 采用水熱法和還原氮化法合成了菊花狀形貌的氮化鈦(TiN)納米材料,并將其與還原氧化石墨烯(rGO)水熱復合制備了氮化鈦–還原氧化石墨烯(TiN-rGO)復合材料。利用掃描電鏡、X射線衍射、X射線光電子能譜等測試方法對材料的形貌和物相進行了表征和分析。結果表明,TiN-rGO復合材料很好地保持了TiN菊花狀的三維結構和rGO透明褶皺的形貌,且層狀的rGO均勻地包覆在了菊花狀的TiN的周圍。用TiN-rGO復合材料修飾玻碳電極(GCE)制得了TiN-rGO/GCE電化學傳感器,用于測定人體中的生物小分子DA和UA。由于復合材料中TiN和rGO的協同效應,構建的電化學傳感器表現出了優秀的電化學性能。檢測結果表明:TiN-rGO/GCE傳感器對DA和UA的檢測限分別為0.11和0.12 μmol·L?1,線性范圍分別為0.5~210 μmol·L?1和5~350 μmol·L?1,且具有良好的抗干擾性、重現性和穩定性,且成功應用于人體內真實樣品的DA和UA檢測。

     

  • 圖  1  TiN (a, b)和TiN-rGO(c, d)的掃描電鏡圖

    Figure  1.  SEM patterns of TiN (a, b) and TiN-rGO (c, d)

    圖  2  (a) TiO2、TiN與TiN-rGO的X射線衍射圖譜;(b) TiN-rGO的X射線光電子能譜全譜圖;(c) C 1s高分辨率X射線光電子能譜

    Figure  2.  (a) XRD patterns of TiO2, TiN, and TiN-rGO; full XPS spectrum (b) and high-resolution spectrum of C 1 s (c) of TiN-rGO

    圖  3  GCE,TiN/GCE和TiN-rGO/GCE電極的循環伏安圖 (a)和交流阻抗圖(b)

    Figure  3.  CV curves (a) and EIS (b) spectra of GCE, TiN/GCE, and TiN-rGO/GCE

    圖  4  TiN-rGO/GCE和GCE在0.1 mol·L?1 PBS(pH值為7)中,含0.5 mmol·L?1 DA和UA,掃描速率100 mV?s?1的循環伏安圖

    Figure  4.  CV curves of 0.5 mmol·L?1 DA and UA in 0.1 mol·L?1 PBS (pH value of 7) on GCE and TiN-rGO/GCE with scan rate of 100 mV?s?1

    圖  5  TiN-rGO/GCE在0.1 mol·L?1的PBS(pH值為7)中差分脈沖伏安法檢測結果. (a) DA的差分脈沖伏安圖;(b) DA峰電流與濃度的關系;(c) UA的差分脈沖伏安圖;(d) UA峰電流與濃度的關系

    Figure  5.  DPV detection by TiN-rGO/GCE in 0.1 mol·L?1 PBS (pH 7): (a) DPV of the detection of DA; (b) relationship between peak current and concentration of DA; (c) DPV of the detection of UA; (d) relationship between peak current and concentration of UA

    圖  6  TiN-rGO/GCE在0.1 mol·L?1 PBS(pH 7)中加入10 μmol·L?1 DA (a)和10 μmol·L?1 UA (b)以及干擾物的計時電流響應圖

    Figure  6.  Amperometric responses of TiN-rGO/GCE upon addition of 10 μmol·L?1 DA (a), 10 μmol·L?1 UA (b), and interfering substances in 0.1 mol·L?1 PBS (pH 7)

    表  1  不同電極檢測DA和UA的效果對比

    Table  1.   Comparison of the detection effects of different electrodes on DA and UA

    電極檢測限/(μmol·L?1)線性范圍/(μmol·L?1)文獻
    DAUADAUA
    Au-RGO/GCE1.401.806.8~418.8~53[22]
    PImox-GO0.630.5912~2783.6~250[23]
    RGO-CNT-Au3.300.3310~3201~114[24]
    RGO-ZnO/GCE0.331.081~703~330[25]
    TiN-rGO/GCE0.110.120.5~2105~350本文
    下載: 導出CSV

    表  2  真實樣品中檢測DA和UA

    Table  2.   Detection results of DA and UA in real samples

    樣品物質加入/
    (μmol·L?1)
    檢測*/
    (μmol·L?1)
    回收率/
    %
    相對標
    準差,RSD/%
    1DA5656.6101.070.52
    UA4039.899.580.22
    2DA9090.8100.890.15
    UA7777.1100.130.10
      注:*為3次測量的平均值。
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Bagheri H, Pajooheshpour N, Jamali B, et al. A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4?SnO2?Gr ternary nanocomposite. Microchem J, 2017, 131: 120 doi: 10.1016/j.microc.2016.12.006
    [2] Ping J F, Wu J, Wang Y X, et al. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens Bioelectron, 2012, 34(1): 70 doi: 10.1016/j.bios.2012.01.016
    [3] Zhao L W, Li H J, Gao S M, et al. MgO nanobelt-modified graphene-tantalum wire electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim Acta, 2015, 168: 191 doi: 10.1016/j.electacta.2015.03.215
    [4] Wang H Y, Hui Q S, Xu L X, et al. Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent. Anal Chim Acta, 2003, 497(1-2): 93 doi: 10.1016/j.aca.2003.08.050
    [5] Wang J, Chatrathi M P, Tian B M, et al. Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid, and acetaminophen. Anal Chem, 2000, 72(11): 2514 doi: 10.1021/ac991489l
    [6] Liu X, Jiang H, Lei J P, et al. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem, 2007, 79(21): 8055 doi: 10.1021/ac070927i
    [7] Ren X, Zhang T, Wu D, et al. Increased electrocatalyzed performance through high content potassium doped graphene matrix and aptamer tri infinite amplification labels strategy: highly sensitive for matrix metalloproteinases-2 detection. Biosens Bioelectron, 2017, 94: 694 doi: 10.1016/j.bios.2017.03.064
    [8] Zhou S H, Shi H Y, Feng X, et al. Design of templated nanoporous carbon electrode materials with substantial high specific surface area for simultaneous determination of biomolecules. Biosens Bioelectron, 2013, 42: 163 doi: 10.1016/j.bios.2012.10.043
    [9] Darmawan W, Usuki H, Rahayu I S, et al. Wear characteristics of multilayer-coated cutting tools when milling particleboard. Forest Prod J, 2010, 60(7-8): 615
    [10] Zahid R, Masjuki H H, Varman M, et al. Effect of lubricant formulations on the tribological performance of self-mated doped DLC contacts: a review. Tribol Lett, 2015, 58(2): 32 doi: 10.1007/s11249-015-0506-5
    [11] Kaskel S, Schlichte K, Kratzke T. Catalytic properties of high surface area titanium nitride materials. J Mol Catal A-Chem, 2004, 208(1-2): 291 doi: 10.1016/S1381-1169(03)00545-4
    [12] Choi D, Kumta P N. Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors. J Electrochem Soc, 2006, 153(12): A2298 doi: 10.1149/1.2359692
    [13] Cui Z M, Zu C X, Zhou W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater, 2016, 28(32): 6926 doi: 10.1002/adma.201601382
    [14] Dong S M, Chen X, Gu L, et al. A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion. Biosens Bioelectron, 2011, 26(10): 4088 doi: 10.1016/j.bios.2011.03.040
    [15] Kong F Y, Gu S X, Wang J Y, et al. Facile green synthesis of graphene-titanium nitride hybrid nanostructure for the simultaneous determination of acetaminophen and 4-aminophenol. Sens Actuators B, 2015, 213: 397 doi: 10.1016/j.snb.2015.02.120
    [16] Zhu J X, Yang D, Yin Z Y, et al. Graphene and graphene-based materials for energy storage applications. Small, 2014, 10(17): 3480 doi: 10.1002/smll.201303202
    [17] Lin X Y, Zhang H, Huang S, et al. Electrochemical determination of levodopa using ZnO nanowire arrays/graphene foam. Chin J Eng, 2016, 38(9): 1306

    林軒宇, 張虹, 黃碩, 等. 氧化鋅納米線陣列/泡沫石墨烯電化學檢測左旋多巴. 工程科學學報, 2016, 38(9):1306
    [18] Zhou L F, Qiu H M, Xu M, et al. Synthesis and electrochemical properties of graphene/MnO2 composites. Chin J Eng, 2016, 38(9): 1300

    周龍斐, 邱紅梅, 徐美, 等. 石墨烯/二氧化錳復合材料的制備及其電化學性能. 工程科學學報, 2016, 38(9):1300
    [19] Shi X L, Dai Z X, Xu L L, et al. Effects of hydrothermal treatment temperature on properties of titanium nitride coating. Trans Mater Heat Treat, 2017, 38(1): 165

    史興嶺, 戴智鑫, 徐玲利, 等. 水熱處理溫度對滲氮鈦陶瓷層性能的影響. 材料熱處理學報, 2017, 38(1):165
    [20] Zhang X, Zhang B, Liu D Y, et al. One-pot synthesis of ternary alloy CuFePt nanoparticles anchored on reduced graphene oxide and their enhanced electrocatalytic activity for both methanol and formic acid oxidation reactions. Electrochim Acta, 2015, 177: 93 doi: 10.1016/j.electacta.2015.02.046
    [21] Kong F Y, Chen T T, Wang J Y, et al. UV-assisted synthesis of tetrapods-like titanium nitride-reduced graphene oxide nanohybrids for electrochemical determination of chloramphenicol. Sens Actuators B, 2016, 225: 298 doi: 10.1016/j.snb.2015.11.041
    [22] Wang C Q, Du J, Wang H W, et al. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuators B, 2014, 204: 302 doi: 10.1016/j.snb.2014.07.077
    [23] Liu X F, Zhang L, Wei S P, et al. Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosens Bioelectron, 2014, 57: 232 doi: 10.1016/j.bios.2014.02.017
    [24] Wang S Y, Zhang W, Zhong X, et al. Simultaneous determination of dopamine, ascorbic acid and uric acid using a multi-walled carbon nanotube and reduced graphene oxide hybrid functionalized by PAMAM and Au nanoparticles. Anal Methods, 2015, 7(4): 1471 doi: 10.1039/C4AY02086C
    [25] Zhang X, Zhang Y C, Ma L X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators B, 2016, 227: 488 doi: 10.1016/j.snb.2015.12.073
  • 加載中
圖(6) / 表(2)
計量
  • 文章訪問數:  1175
  • HTML全文瀏覽量:  1079
  • PDF下載量:  24
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-04
  • 刊出日期:  2019-12-01

目錄

    /

    返回文章
    返回