Electrochemical detection of dopamine and uric acid using a titanium nitride-graphene composite sensor
-
摘要: 采用水熱法和還原氮化法合成了菊花狀形貌的氮化鈦(TiN)納米材料,并將其與還原氧化石墨烯(rGO)水熱復合制備了氮化鈦–還原氧化石墨烯(TiN-rGO)復合材料。利用掃描電鏡、X射線衍射、X射線光電子能譜等測試方法對材料的形貌和物相進行了表征和分析。結果表明,TiN-rGO復合材料很好地保持了TiN菊花狀的三維結構和rGO透明褶皺的形貌,且層狀的rGO均勻地包覆在了菊花狀的TiN的周圍。用TiN-rGO復合材料修飾玻碳電極(GCE)制得了TiN-rGO/GCE電化學傳感器,用于測定人體中的生物小分子DA和UA。由于復合材料中TiN和rGO的協同效應,構建的電化學傳感器表現出了優秀的電化學性能。檢測結果表明:TiN-rGO/GCE傳感器對DA和UA的檢測限分別為0.11和0.12 μmol·L?1,線性范圍分別為0.5~210 μmol·L?1和5~350 μmol·L?1,且具有良好的抗干擾性、重現性和穩定性,且成功應用于人體內真實樣品的DA和UA檢測。Abstract: Dopamine (DA) and uric acid (UA) are small biological molecules involved in many important processes in the human body. Their concentrations are closely related to human health. Abnormal concentrations of these molecules lead to various diseases, such as Parkinson's and gout, so monitoring of DA and UA in blood and urine, respectively, is very meaningful in clinical analysis. Electrochemical sensor detection is a widely-used method in the field of biological analysis owing to its advantages of simple operation, high sensitivity, low cost, environmental friendliness, etc. In this paper, titanium nitride (TiN) nanomaterial with chrysanthemum morphology was synthesized by hydrothermal and reduction nitridation methods toward preparation of an effective electrochemical sensor for human testing. It was further combined with reduced graphene oxide (rGO) through the hydrothermal method to form a titanium nitride-reduced graphene oxide (TiN-rGO) composite material. The phase and morphology of the material were characterized and analyzed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and other test methods. The results show that the TiN-rGO composite material maintaines the three-dimensional chrysanthemum-like morphology of TiN, and the transparent and wrinkled morphology of rGO. The chrysanthemum-like TiN is uniformly coated with the layered rGO. The TiN-rGO/GCE electrochemical sensor was then prepared by modifying the glassy carbon electrode (GCE) with TiN-rGO composite material for the determination DA and UA levels in the human body. Due to the synergistic effect of TiN and rGO in the composite, the constructed electrochemical sensor exhibits excellent electrochemical performance. The detection results show that the detection limits of DA and UA for the TiN-rGO/GCE electrochemical sensor are 0.11 and 0.12 μmol·L?1, respectively, and the linear ranges are 0.5?210 μmol·L?1 and 5?350 μmol·L?1, respectively. TiN-rGO/GCE electrochemical sensor also has good anti-interference, reproducibility and stability, and has been successfully applied in the detection of DA and UA in real human samples.
-
Key words:
- titanium nitride /
- reduced graphene oxide /
- dopamine /
- uric acid /
- electrochemical sensor
-
圖 5 TiN-rGO/GCE在0.1 mol·L?1的PBS(pH值為7)中差分脈沖伏安法檢測結果. (a) DA的差分脈沖伏安圖;(b) DA峰電流與濃度的關系;(c) UA的差分脈沖伏安圖;(d) UA峰電流與濃度的關系
Figure 5. DPV detection by TiN-rGO/GCE in 0.1 mol·L?1 PBS (pH 7): (a) DPV of the detection of DA; (b) relationship between peak current and concentration of DA; (c) DPV of the detection of UA; (d) relationship between peak current and concentration of UA
表 1 不同電極檢測DA和UA的效果對比
Table 1. Comparison of the detection effects of different electrodes on DA and UA
表 2 真實樣品中檢測DA和UA
Table 2. Detection results of DA and UA in real samples
樣品 物質 加入/
(μmol·L?1)檢測*/
(μmol·L?1)回收率/
%相對標
準差,RSD/%1 DA 56 56.6 101.07 0.52 UA 40 39.8 99.58 0.22 2 DA 90 90.8 100.89 0.15 UA 77 77.1 100.13 0.10 注:*為3次測量的平均值。 www.77susu.com -
參考文獻
[1] Bagheri H, Pajooheshpour N, Jamali B, et al. A novel electrochemical platform for sensitive and simultaneous determination of dopamine, uric acid and ascorbic acid based on Fe3O4?SnO2?Gr ternary nanocomposite. Microchem J, 2017, 131: 120 doi: 10.1016/j.microc.2016.12.006 [2] Ping J F, Wu J, Wang Y X, et al. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens Bioelectron, 2012, 34(1): 70 doi: 10.1016/j.bios.2012.01.016 [3] Zhao L W, Li H J, Gao S M, et al. MgO nanobelt-modified graphene-tantalum wire electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim Acta, 2015, 168: 191 doi: 10.1016/j.electacta.2015.03.215 [4] Wang H Y, Hui Q S, Xu L X, et al. Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent. Anal Chim Acta, 2003, 497(1-2): 93 doi: 10.1016/j.aca.2003.08.050 [5] Wang J, Chatrathi M P, Tian B M, et al. Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid, and acetaminophen. Anal Chem, 2000, 72(11): 2514 doi: 10.1021/ac991489l [6] Liu X, Jiang H, Lei J P, et al. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem, 2007, 79(21): 8055 doi: 10.1021/ac070927i [7] Ren X, Zhang T, Wu D, et al. Increased electrocatalyzed performance through high content potassium doped graphene matrix and aptamer tri infinite amplification labels strategy: highly sensitive for matrix metalloproteinases-2 detection. Biosens Bioelectron, 2017, 94: 694 doi: 10.1016/j.bios.2017.03.064 [8] Zhou S H, Shi H Y, Feng X, et al. Design of templated nanoporous carbon electrode materials with substantial high specific surface area for simultaneous determination of biomolecules. Biosens Bioelectron, 2013, 42: 163 doi: 10.1016/j.bios.2012.10.043 [9] Darmawan W, Usuki H, Rahayu I S, et al. Wear characteristics of multilayer-coated cutting tools when milling particleboard. Forest Prod J, 2010, 60(7-8): 615 [10] Zahid R, Masjuki H H, Varman M, et al. Effect of lubricant formulations on the tribological performance of self-mated doped DLC contacts: a review. Tribol Lett, 2015, 58(2): 32 doi: 10.1007/s11249-015-0506-5 [11] Kaskel S, Schlichte K, Kratzke T. Catalytic properties of high surface area titanium nitride materials. J Mol Catal A-Chem, 2004, 208(1-2): 291 doi: 10.1016/S1381-1169(03)00545-4 [12] Choi D, Kumta P N. Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors. J Electrochem Soc, 2006, 153(12): A2298 doi: 10.1149/1.2359692 [13] Cui Z M, Zu C X, Zhou W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater, 2016, 28(32): 6926 doi: 10.1002/adma.201601382 [14] Dong S M, Chen X, Gu L, et al. A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion. Biosens Bioelectron, 2011, 26(10): 4088 doi: 10.1016/j.bios.2011.03.040 [15] Kong F Y, Gu S X, Wang J Y, et al. Facile green synthesis of graphene-titanium nitride hybrid nanostructure for the simultaneous determination of acetaminophen and 4-aminophenol. Sens Actuators B, 2015, 213: 397 doi: 10.1016/j.snb.2015.02.120 [16] Zhu J X, Yang D, Yin Z Y, et al. Graphene and graphene-based materials for energy storage applications. Small, 2014, 10(17): 3480 doi: 10.1002/smll.201303202 [17] Lin X Y, Zhang H, Huang S, et al. Electrochemical determination of levodopa using ZnO nanowire arrays/graphene foam. Chin J Eng, 2016, 38(9): 1306林軒宇, 張虹, 黃碩, 等. 氧化鋅納米線陣列/泡沫石墨烯電化學檢測左旋多巴. 工程科學學報, 2016, 38(9):1306 [18] Zhou L F, Qiu H M, Xu M, et al. Synthesis and electrochemical properties of graphene/MnO2 composites. Chin J Eng, 2016, 38(9): 1300周龍斐, 邱紅梅, 徐美, 等. 石墨烯/二氧化錳復合材料的制備及其電化學性能. 工程科學學報, 2016, 38(9):1300 [19] Shi X L, Dai Z X, Xu L L, et al. Effects of hydrothermal treatment temperature on properties of titanium nitride coating. Trans Mater Heat Treat, 2017, 38(1): 165史興嶺, 戴智鑫, 徐玲利, 等. 水熱處理溫度對滲氮鈦陶瓷層性能的影響. 材料熱處理學報, 2017, 38(1):165 [20] Zhang X, Zhang B, Liu D Y, et al. One-pot synthesis of ternary alloy CuFePt nanoparticles anchored on reduced graphene oxide and their enhanced electrocatalytic activity for both methanol and formic acid oxidation reactions. Electrochim Acta, 2015, 177: 93 doi: 10.1016/j.electacta.2015.02.046 [21] Kong F Y, Chen T T, Wang J Y, et al. UV-assisted synthesis of tetrapods-like titanium nitride-reduced graphene oxide nanohybrids for electrochemical determination of chloramphenicol. Sens Actuators B, 2016, 225: 298 doi: 10.1016/j.snb.2015.11.041 [22] Wang C Q, Du J, Wang H W, et al. A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuators B, 2014, 204: 302 doi: 10.1016/j.snb.2014.07.077 [23] Liu X F, Zhang L, Wei S P, et al. Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosens Bioelectron, 2014, 57: 232 doi: 10.1016/j.bios.2014.02.017 [24] Wang S Y, Zhang W, Zhong X, et al. Simultaneous determination of dopamine, ascorbic acid and uric acid using a multi-walled carbon nanotube and reduced graphene oxide hybrid functionalized by PAMAM and Au nanoparticles. Anal Methods, 2015, 7(4): 1471 doi: 10.1039/C4AY02086C [25] Zhang X, Zhang Y C, Ma L X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators B, 2016, 227: 488 doi: 10.1016/j.snb.2015.12.073 -