<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

功能化新型耐火材料的設計、制備及應用

王恩會 陳俊紅 侯新梅

王恩會, 陳俊紅, 侯新梅. 功能化新型耐火材料的設計、制備及應用[J]. 工程科學學報, 2019, 41(12): 1520-1526. doi: 10.13374/j.issn2095-9389.2019.07.04.033
引用本文: 王恩會, 陳俊紅, 侯新梅. 功能化新型耐火材料的設計、制備及應用[J]. 工程科學學報, 2019, 41(12): 1520-1526. doi: 10.13374/j.issn2095-9389.2019.07.04.033
WANG En-hui, CHEN Jun-hong, HOU Xin-mei. Design, preparation, and application of new functional refractories[J]. Chinese Journal of Engineering, 2019, 41(12): 1520-1526. doi: 10.13374/j.issn2095-9389.2019.07.04.033
Citation: WANG En-hui, CHEN Jun-hong, HOU Xin-mei. Design, preparation, and application of new functional refractories[J]. Chinese Journal of Engineering, 2019, 41(12): 1520-1526. doi: 10.13374/j.issn2095-9389.2019.07.04.033

功能化新型耐火材料的設計、制備及應用

doi: 10.13374/j.issn2095-9389.2019.07.04.033
基金項目: 國家自然科學基金資助項目(51904021,51974021,51874027);中央高校基本科研業務費資助項目(FRF-TP-19-008A1);國家優秀青年基金資助項目(51522402)
詳細信息
    通訊作者:

    E-mail:houxinmei01@126.com

  • 中圖分類號: TG142.71

Design, preparation, and application of new functional refractories

More Information
  • 摘要: 圍繞兩種新型耐火材料展開,即鋼包精煉用高性能低碳鎂碳耐火材料以及超低氧鋼用耐火材料,初步實驗表明,將大尺寸的碳硅化鋁(Al4SiC4)引入到鎂碳磚(MgO?C)中不僅可以提高其抗氧化能力,又能對含碳耐火材料氧化后的疏松結構進行修復,有望成為新一代鋼包精煉用高性能低碳鎂碳耐火材料;CaO?MgO?Al2O3(CMA)材料兼具優異的熱機械和耐渣侵性能的同時,還可以在服役過程產生低熔點精煉渣相,具備凈化鋼水的潛力。可以預見,上述功能化新型耐火材料有望為高品質鋼的進一步發展提供有力材料支撐。

     

  • 圖  1  晶體結構示意圖. (a) Al4SiC4;(b)SiC單元晶體;(c) Al4C3單元 晶體

    Figure  1.  Schematic diagram of the crystal structure: (a) Al4SiC4; (b) SiC unit; (c) Al4C3 unit

    圖  2  典型的Al4SiC4陶瓷形貌. (a)氧化表面;(b)橫截面

    Figure  2.  Typical morphologies of Al4SiC4 ceramic: (a) oxidized surface; (b) oxidized cross-section

    圖  3  1900 ℃條件下Al–Si–C–O體系氣相分壓圖[22]

    Figure  3.  Equilibrium partial pressures of gases as a function of PCO for 1900 ℃[22]

    圖  4  1900 ℃條件下碳熱還原制備Al4SiC4材料的物相分析結果

    Figure  4.  XRD pattern of Al4SiC4 synthesized via carbothermic method at 1900 ℃

    圖  5  碳熱還原法在1900 ℃合成Al4SiC4晶體的掃描電鏡照片

    Figure  5.  SEM images of Al4SiC4 synthesized via carbothermic method at 1900 ℃

    圖  6  不同溫度下Al4SiC4晶體的結構演變. (a) 1400 ℃;(b) 1500 ℃;(c) 1600 ℃

    Figure  6.  Evolution of Al4SiC4 crystal at different temperatures: (a) 1400 ℃;(b) 1500 ℃;(c) 1600 ℃

    圖  7  體系中生成中的MgAl2O4的形貌. (a) 1400 ℃;(b) 1500 ℃;(c) 1600 ℃

    Figure  7.  Morphologies of MgAl2O4 in MgO–C system with Al4SiC4 added at different temperatures: (a) 1400 ℃; (b) 1500 ℃; (c) 1600 ℃

    圖  8  1650 ℃條件下CaO–MgO–Al2O3三元相圖(部分)

    Figure  8.  Ternary phase diagram of CaO–MgO–Al2O3 at 1650 ℃ (partial)

    圖  9  晶體結構示意圖. (a) CA6;(b) MA;(c) CM2A8;(d) C2M2A14

    Figure  9.  Schematic diagram of crystal structure: (a) CA6; (b) MA; (c) CM2A8; (d) C2M2A14

    圖  10  1700 ℃熱壓后CM2A8的X射線衍射圖譜(a)、形貌表征(b)和結晶狀態表征(c)

    Figure  10.  CM2A8 ceramic after hot-press sintering at 1700 ℃: (a) XRD pattern; (b) morphological characterization; (c) crystalline state characterization

    圖  11  CM2A8的抗渣侵蝕實驗表征. (a)抗LF渣侵蝕;(b)抗RH渣侵蝕

    Figure  11.  Resistance behavior of CM2A8: (a) LF slag; (b) RH slag

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] 李明, 王新成, 段加恒, 等. 軸承鋼中D類夾雜物的形成與控制. 工程科學學報, 2018, 40(增刊1):31)

    Li M, Wang X C, Duan J H, et al. Formation and controlling of Type-D inclusions in bearing steel. Chin J Eng, 2018, 40(增刊1): 31
    [2] Wang M, Hao Y, Ma C Y, et al. Effect of the morphologies of non-metallic inclusions on their removal behavior. Chin J Eng, 2016, 38(1): 34

    王敏, 郝陽, 馬鋮佑, 等. 鋼中非金屬夾雜物形態對其去除行為的影響. 工程科學學報, 2016, 38(1):34
    [3] Jiang M, Wang K P, Hou Z W, et al. Formation mechanism of oversized DS-type inclusions in low oxygen special steel. Chin J Eng, 2016, 38(6): 780

    姜敏, 王昆鵬, 侯澤旺, 等. 低氧特殊鋼中大尺寸DS類夾雜物生成機理. 工程科學學報, 2016, 38(6):780
    [4] Zhang X W, Zhang L F, Yang W, et al. Comparison of 2D and 3D morphology of non-metallic inclusions in steel using different methods. Metall Res Technol, 2017, 114(1): 113 doi: 10.1051/metal/2016056
    [5] Stampa E, Cipparrone M. Detection of harmful inclusions in steels for tire cord. Wire J Int, 1987, 20(3): 44
    [6] Yao H B, Yao S Z, Luo C, et al. Current research and developing trend of MgO-C bricks. Chin J Eng, 2018, 40(3): 253

    姚華柏, 姚蘇哲, 駱昶, 等. 鎂碳磚的研究現狀與發展趨勢. 工程科學學報, 2018, 40(3):253
    [7] Ye X Y. Effects of antioxidants on oxidation resistance of MgO?C refractory brick. Refract Lime, 2008, 33(5): 36

    葉小葉. 抗氧化劑對鎂碳耐火磚抗氧化性的影響. 耐火與石灰, 2008, 33(5):36
    [8] Ko Y C. Influence of the characteristics of spinels on the slag resistance of Al2O3?MgO and Al2O3-spinel castables. J Am Ceram Soc, 2010, 83(9): 2333
    [9] Chen S K, Cheng M Y, Lin S J, et al. Thermal characteristics of Al2O3?MgO and Al2O3-spinelcastables for steel ladles. Ceram Int, 2002, 28(7): 811 doi: 10.1016/S0272-8842(02)00047-0
    [10] Zhong X C. Looking ahead― a new generation of high performance refractory ceramics. Refractories, 2003, 37(1): 1 doi: 10.3969/j.issn.1001-1935.2003.01.001

    鐘香崇. 展望新一代優質高效耐火材料. 耐火材料, 2003, 37(1):1 doi: 10.3969/j.issn.1001-1935.2003.01.001
    [11] Lindskog N, Kjellberg B. Removal of oxide inclusions resulting from strong deoxidizers. Scand J Metall, 1977, 6(2): 49
    [12] Wang E H, Chen J H, Hou X M. Current research and latest developments on refractories used as ladle linings. Chin J Eng, 2019, 41(6): 695

    王恩會, 陳俊紅, 侯新梅. 鋼包工作襯用耐火材料的研究現狀及最新進展. 工程科學學報, 2019, 41(6):695
    [13] Liao T, Wang J Y, Zhou Y Y. Atomistic deformation modes and intrinsic brittleness of Al4SiC4: a first-principles investigation. Phys Rev B, 2006, 74(17): 174112 doi: 10.1103/PhysRevB.74.174112
    [14] Barczak V J. Optical and X-ray powder diffraction data for Al4SiC4. J Am Ceram Soc, 1961, 44(6): 299 doi: 10.1111/j.1151-2916.1961.tb15383.x
    [15] Yamamoto O, Ohtani M, Sasamoto T. Preparation and oxidation of Al4SiC4. J Mater Res, 2002, 17(4): 774 doi: 10.1557/JMR.2002.0113
    [16] Zhang S W, Yamaguchi A. Effect of Al4SiC4 addition to carbon-containing refractories. J Ceram Soc Jpn, 1995, 103(1195): 235 doi: 10.2109/jcersj.103.235
    [17] Yamaguchi A, Zhang S W. Synthesis and some properties of Al4SiC4. J Ceram Soc Jpn, 1995, 103(1193): 20 doi: 10.2109/jcersj.103.20
    [18] Liu H L. The formation mechanism and application of in-situ spinel in Al2O3?MgO refractory castable. Refract Lime, 2013, 38(5): 46 doi: 10.3969/j.issn.1673-7792.2013.05.013

    劉會林. Al2O3?MgO耐火澆注料中原位尖晶石形成機理的基礎與應用. 耐火與石灰, 2013, 38(5):46 doi: 10.3969/j.issn.1673-7792.2013.05.013
    [19] Itatani K, Takahashi F, Aizawa M, et al. Densification and microstructural developments during the sintering of aluminium silicon carbide. J Mater Sci, 2002, 37(2): 335 doi: 10.1023/A:1013604429508
    [20] Yamamoto O. Effect of triethanolamine on low-temperature preparation of aluminum silicon carbide. Solid State Sci, 2003, 5(2): 277 doi: 10.1016/S1293-2558(02)00058-4
    [21] Inoue K, Yamaguchi A. Synthesis of Al4SiC4. J Am Ceram Soc, 2003, 86(6): 1028 doi: 10.1111/j.1151-2916.2003.tb03414.x
    [22] Xing X M, Li B, Chen J H, et al. Formation mechanism of large size plate-like Al4SiC4 grains by a carbothermal reduction method. Cryst Eng Comm, 2018, 20(10): 1399 doi: 10.1039/C7CE02193C
    [23] Xing X M, Chen J H, Bei G P, et al. Synthesis of Al4SiC4 powders via carbothermic reduction: reaction and grain growth mechanisms. J Adv Ceram, 2017, 6(4): 351 doi: 10.1007/s40145-017-0247-z
    [24] Yao H B, Xing X M, Wang E H, et al. Oxidation behavior and mechanism of Al4SiC4 in MgO?C?Al4SiC4 system. Coatings, 2017, 7(7): 85 doi: 10.3390/coatings7070085
    [25] Hasegawa M, Itatani K, Aizawa M, et al. Low-temperature synthesis of aluminum silicon carbide using ultrafine aluminum carbide and silicon carbide powders. J Am Ceram Soc, 1996, 79(1): 275 doi: 10.1111/j.1151-2916.1996.tb07909.x
    [26] Gaballa O, Cook B, Russell A. Formation, densification, and selected mechanical properties of hot pressed Al4SiC4, Al4SiC4 with 30vol.% TiC. Ceram Int, 2011, 37(8): 3117 doi: 10.1016/j.ceramint.2011.05.050
    [27] Inoue K, Mori S, Yamaguchi A. Thermal conductivity and temperature dependence of linear thermal expansion coefficient of Al4SiC4 sintered bodies prepared by pulse electronic current sintering. J Ceram Soc Jpn, 2003, 111(1293): 348 doi: 10.2109/jcersj.111.348
    [28] Xing X M. Synthesis of Al4SiC4 Powder and Its Evolution Behavior in MgO−C System[Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    邢新明. Al4SiC4的合成及其在MgO−C體系中的演變研究[學位論文]. 北京: 北京科技大學, 2018
    [29] G?bbels M, Woermann E, Jung J. The Al-rich part of the system CaO?Al2O3?MgO. Part I. phase relationships. J Solid State Chem, 1995, 120(2): 358 doi: 10.1006/jssc.1995.1420
    [30] Iyi N, G?bbels M, Matsui Y. The Al-Rich part of the system CaO?Al2O3?MgO. Part II. Structure refinement of two new magnetoplumbite-related phases. J. Solid State Chem, 1995, 120(2): 364 doi: 10.1006/jssc.1995.1421
    [31] Chen J H, Yan M W, Su J D, et al. Controllable preparation of Al2O3-MgO·Al2O3-CaO·6Al2O3(AMC) composite with improved slag penetration resistance. Int J Appl Ceram Technol, 2016, 13(1): 33 doi: 10.1111/ijac.12427
    [32] Li B, Chen H Y, Chen J H, et al. Preparation, growth mechanism and slag resistance behavior of ternary Ca2Mg2Al28O46(C2M2A14). Int J Appl Ceram Technol, 2019, 16(3): 1126 doi: 10.1111/ijac.13167
    [33] Li B, Li G Q, Chen H Y, et al. Physical and mechanical properties of hot-press sintering ternary CM2A8(CaMg2Al16O27) and C2M2A14(Ca2Mg2Al28O46) ceramics. J Adv Ceram, 2018, 7(3): 229 doi: 10.1007/s40145-018-0274-4
  • 加載中
圖(11)
計量
  • 文章訪問數:  1288
  • HTML全文瀏覽量:  957
  • PDF下載量:  85
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-04
  • 刊出日期:  2019-12-01

目錄

    /

    返回文章
    返回