<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

層狀氮化硼納米片的制備及表征

劉慧娟 白帆 王恩會 楊濤 陳俊紅 周國治 侯新梅

劉慧娟, 白帆, 王恩會, 楊濤, 陳俊紅, 周國治, 侯新梅. 層狀氮化硼納米片的制備及表征[J]. 工程科學學報, 2019, 41(12): 1543-1549. doi: 10.13374/j.issn2095-9389.2019.07.04.032
引用本文: 劉慧娟, 白帆, 王恩會, 楊濤, 陳俊紅, 周國治, 侯新梅. 層狀氮化硼納米片的制備及表征[J]. 工程科學學報, 2019, 41(12): 1543-1549. doi: 10.13374/j.issn2095-9389.2019.07.04.032
LIU Hui-juan, BAI Fan, WANG En-hui, YANG Tao, CHEN Jun-hong, CHOU Kuo-Chih, HOU Xin-mei. Preparation and characterization of layered boron nitride nanosheets[J]. Chinese Journal of Engineering, 2019, 41(12): 1543-1549. doi: 10.13374/j.issn2095-9389.2019.07.04.032
Citation: LIU Hui-juan, BAI Fan, WANG En-hui, YANG Tao, CHEN Jun-hong, CHOU Kuo-Chih, HOU Xin-mei. Preparation and characterization of layered boron nitride nanosheets[J]. Chinese Journal of Engineering, 2019, 41(12): 1543-1549. doi: 10.13374/j.issn2095-9389.2019.07.04.032

層狀氮化硼納米片的制備及表征

doi: 10.13374/j.issn2095-9389.2019.07.04.032
基金項目: 國家自然科學基金優秀青年基金資助項目(51522402);博士后創新人才支持計劃資助項目(BX20180034);國家自然科學基金青年基金資助項目(51902020);博士后科學基金資助項目(2018M641192);中央高校基本科研業務費資助項目(FRF-TP-18-045A1)
詳細信息
    通訊作者:

    E-mail:yangtaoustb@ustb.edu.cn

  • 中圖分類號: V254.2

Preparation and characterization of layered boron nitride nanosheets

More Information
  • 摘要: 基于前驅體合成與氨氣氮化兩步法,通過對前驅體合成關鍵參數B源/N源比、分散劑種類、前驅體干燥方式進行調控,實現了大比表面積、少層氮化硼納米片材料的制備。其優化條件為以硼酸為硼源,尿素為氮源,硼酸與尿素摩爾比為1∶30,甲醇和去離子水作為分散劑,利用真空冷凍干燥方式合成前驅體。將前驅體在氨氣氣氛下900 ℃保溫3 h合成了氮化硼納米片。利用X射線衍射測試、X射線光電子能譜測試、拉曼光譜測試、熱重分析測試等對合成產物進行了物相和結構表征,利用掃描電子顯微鏡、原子力顯微鏡、透射電子顯微鏡、氮氣吸脫附曲線等對合成產物進行了形貌及比表面積表征。結果表明:合成的氮化硼為六方氮化硼納米片(h-BNNSs),純度高,形貌類石墨烯,層數為2~4層,厚度平均為1 nm,比表面積為871.8 m2·g?1,單次產物質量平均可達240 mg,合成產物平均產率可達96.7%。該方法簡單易操作,實現了大比表面積少層氮化硼的制備,有助于氮化硼在各應用領域的研究,如氮化硼/石墨烯復合材料、納米電子器件、污染物的吸附、儲氫等。

     

  • 圖  1  不同條件下制備所得h-BNNSs試樣的掃描電鏡圖. (a) 1#; (b) 2#; (c, d) 3#; (e, f, g) 4#; (h) 5#; (i) 6#

    Figure  1.  Scanning electron microscope images of h-BNNSs prepared under different experimental conditions: (a) 1#; (b) 2#; (c, d) 3#; (e, f, g) 4#; (h) 5#; (i) 6#

    圖  2  h-BNNSs不同放大倍數下的掃描電鏡圖

    Figure  2.  SEM images of h-BNNSs at different magnification

    圖  3  h-BNNSs的物相表征. (a) X射線衍射圖譜;(b) 熱重–差熱分析曲線;(c) 拉曼光譜;(d) X射線光電子能譜;(e) N1s元素特征譜;(f) B1s元素特征譜

    Figure  3.  Phase characterization of h-BNNSs: (a) XRD pattern; (b) TG-DTA patterns; (c) Raman spectrum; (d) XPS spectra; XPS spectra: core-level B1s (e) and core-level N1s (f) of h-BNNSs

    圖  4  h-BNNSs的微觀形貌表征.(a,b)透射電鏡圖;(c)高分辨率透射電鏡圖;(d)選區電子衍射圖;(e) 原子力顯微鏡圖;(f) 單片納米片的基本尺寸和厚度表征

    Figure  4.  Morphologies of h-BNNSs: (a, b) TEM images; (c) HRTEM image; (d) SAED image; (e) AFM image; (f) height profiles showing typical size and thickness of a single nanosheet

    圖  5  h-BNNSs的N2吸附脫附等溫線(插圖為產物在石英舟中普通光學圖)(a)和孔徑分布圖(b)

    Figure  5.  Nitrogen adsorption–desorption isotherm, inserted image showing ordinary optical image of the reaction product in a fused-silicon boat (a) and corresponding pore size distributions of h-BNNSs (b)

    表  1  少層h-BNNSs制備因素調控

    Table  1.   Experimental conditions of few-layer h-BNNSs

    試樣編號硼酸/尿素摩爾比分散劑種類前驅體制備干燥方法
    1#1∶10乙醇水溶液45 ℃水浴式蒸發結晶
    2#1∶20乙醇水溶液45 ℃水浴式蒸發結晶
    3#1∶30乙醇水溶液45 ℃水浴式蒸發結晶
    4#1∶30甲醇水溶液45 ℃水浴式蒸發結晶
    5#1∶30甲醇水溶液45 ℃鼓風干燥箱蒸發結晶
    6#1∶30甲醇水溶液冷凍干燥式蒸發結晶
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Tang C C, Bando Y. Effect of BN coatings on oxidation resistance and field emission of SiC nanowires. Appl Phys Lett, 2003, 83(4): 659 doi: 10.1063/1.1595721
    [2] Lorrette C, Weisbecker P, Jacques S, et al. Deposition and characterization of hex-BN coating on carbon fibres using tris (dimethylamino) borane precursor. J Eur Ceram Soc, 2007, 27(7): 2737 doi: 10.1016/j.jeurceramsoc.2006.10.010
    [3] Hernandez E, Goze C, Bernier P, et al. Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett, 1998, 80(20): 4502 doi: 10.1103/PhysRevLett.80.4502
    [4] Che J W, Cagin T, Goddard III W A. Thermal conductivity of carbon nanotubes. Nanotechnology, 2000, 11(2): 65 doi: 10.1088/0957-4484/11/2/305
    [5] Han T W, Luo Y, Wang C Y. Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. J Phys D Appl Phys, 2013, 47(2): 025303
    [6] Yu Y L, Chen H, Liu Y, et al. Superhydrophobic and superoleophilic porous boron nitride nanosheet/polyvinylidene fluoride composite material for oil-polluted water cleanup. Adv Mater Interfaces, 2015, 2(1): 1400267 doi: 10.1002/admi.201400267
    [7] Liu H, Jin P, Xue Y M, et al. Photochemical synthesis of ultrafine cubic boron nitride nanoparticles under ambient conditions. Angew Chem Int Ed, 2015, 54(24): 7051 doi: 10.1002/anie.201502023
    [8] Postole G, Caldararu M, Bonnetot B, et al. Influence of the support surface chemistry on the catalytic performances of PdO/BN catalysts. J Phys Chem C, 2008, 112(30): 11385 doi: 10.1021/jp803963e
    [9] Ma R Z, Bando Y, Zhu H W, et al. Hydrogen uptake in boron nitride nanotubes at room temperature. J Am Chem Soc, 2002, 124(26): 7672 doi: 10.1021/ja026030e
    [10] Lee K H, Shin H J, Lee J, et al. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett, 2012, 12(2): 714 doi: 10.1021/nl203635v
    [11] Han W Q, Wu L J, Zhu Y M, et al. Structure of chemically derived mono-and few-atomic-layer boron nitride sheets. Appl Phys Lett, 2008, 93(22): 223103 doi: 10.1063/1.3041639
    [12] Li H, Zhang Q, Yap C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater, 2012, 22(7): 1385 doi: 10.1002/adfm.201102111
    [13] Kim K K, Hsu A, Jia X T, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett, 2012, 12(1): 161 doi: 10.1021/nl203249a
    [14] Deng Y X, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano, 2014, 8(8): 8292 doi: 10.1021/nn5027388
    [15] Cai Q R, Scullion D, Gan W, et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci Adv, 2019, 5(6): eaav0129 doi: 10.1126/sciadv.aav0129
    [16] Pacile D, Meyer J C, Girit ? ?, et al. The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett, 2008, 92(13): 133107 doi: 10.1063/1.2903702
    [17] Li X L, Hao X P, Zhao M W, et al. Exfoliation of hexagonal boron nitride by molten hydroxides. Adv Mater, 2013, 25(15): 2200 doi: 10.1002/adma.201204031
    [18] Li Q, Yang T, Yang Q F, et al. Porous hexagonal boron nitride whiskers fabricated at low temperature for effective removal of organic pollutants from water. Ceram Int, 2016, 42(7): 8754 doi: 10.1016/j.ceramint.2016.02.114
    [19] Gibb A L, Alem N, Chen J H, et al. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J Am Chem Soc, 2013, 135(18): 6758 doi: 10.1021/ja400637n
    [20] Cao L, Emami S, Lafdi K. Large-scale exfoliation of hexagonal boron nitride nanosheets in liquid phase. Mater Express, 2014, 4(2): 165 doi: 10.1166/mex.2014.1155
    [21] Zhao D, Ke R L, Zou X, et al. Research progress on preparation technology of boron nitride nanosheets. J Funct Mater, 2016, 12(47): 12071

    趙迪, 柯瑞林, 鄒雄, 等. 氮化硼納米片制備方法研究進展. 功能材料, 2016, 12(47):12071
    [22] Hou X M, Qiu P L, Yang T, et al. Synthesis of titanium nitride nanopowder at low temperature from the combustion synthesized precursor and the thermal stability. J Alloys Compd, 2014, 615: 838 doi: 10.1016/j.jallcom.2014.07.078
    [23] Wang X F, Liu J C, Hou F, et al. Synthesis of ZrC-SiC powders from hybrid liquid precursors with improved oxidation resistance. J Am Ceram Soc, 2015, 98(1): 197 doi: 10.1111/jace.13274
    [24] Liu D, Lei W W, Qin S, et al. Template-free synthesis of functional 3D BN architecture for removal of dyes from water. Sci Rep-UK, 2014, 4: 4453
    [25] Li J Q, Zhou J, Hao H J, et al. Preparation of hexagonal boron nitride nanosheet. J Shaanxi Univ Sci Technol, 2015, 33(6): 40

    李軍奇, 周健, 郝紅娟, 等. 六方氮化硼納米片的制備. 陜西科技大學學報:自然科學版, 2015, 33(6):40
    [26] Wu P W, Zhu W S, Chao Y H, et al. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. Chem Commun, 2016, 52(1): 144 doi: 10.1039/C5CC07830J
    [27] Luo W, Wang Y B, Hitz E, et al. Solution processed boron nitride nanosheets: synthesis, assemblies and emerging applications. Adv Funct Mater, 2017, 27(31): 1701450 doi: 10.1002/adfm.201701450
    [28] Xi X L, Nie Z R, Yang J C, et al. Preparation and characterization of Ce-W composite nanopowder. Mat Sci Eng A, 2005, 394(1-2): 360 doi: 10.1016/j.msea.2004.11.052
    [29] Luan W L, Gao L, Guo J K. Study on drying stage of nanoscale powder preparation. Nanostruct Mater, 1998, 10(7): 1119 doi: 10.1016/S0965-9773(98)00142-1
    [30] Tu X F, Zhou Y K, Song Y J. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries. Appl Surf Sci, 2017, 400: 329 doi: 10.1016/j.apsusc.2016.12.220
    [31] Guo D Y, Zhao Y J, Ling C, et al. Vacuum freeze-drying assisted preparation of spherical AlB2 powders with ultrafine microstructure. Ceram Int, 2018, 44(6): 6451 doi: 10.1016/j.ceramint.2018.01.040
    [32] Annie D, Chandramouli V, Anthonysamy S, et al. Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders. J Nucl Mater, 2017, 484: 51 doi: 10.1016/j.jnucmat.2016.11.019
    [33] Liu R P, Xu T T, Wang C A. A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram Int, 2016, 42(2): 2907 doi: 10.1016/j.ceramint.2015.10.148
    [34] Lin J, Xu L L, Huang Y, et al. Ultrafine porous boron nitride nanofibers synthesized via a freeze-drying and pyrolysis process and their adsorption properties. RSC Adv, 2016, 6(2): 1253 doi: 10.1039/C5RA23426C
    [35] Yuan S D. Preparation and Properties of BN Nano Materials[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2009

    袁頌東. 氮化硼納米材料的制備及性能研究[學位論文]. 武漢: 華中科技大學, 2009
    [36] Wen Y, Shang X Z, Dong J, et al. Ultraclean and large-area monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nanotechnology, 2015, 26(27): 275601 doi: 10.1088/0957-4484/26/27/275601
    [37] Gorbachev R V, Riaz I, Nair R R, et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small, 2011, 7(4): 465 doi: 10.1002/smll.201001628
    [38] Tay R Y, Griep M H, Mallick G, et al. Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper. Nano Lett, 2014, 14(2): 839 doi: 10.1021/nl404207f
    [39] Yang M Y, Zhang B, Zhang X, et al. Study on the geometrical structures, electronic structures, magnetic properties and edge effects of graphene and hexagonal boron nitride nanosheets. J Atom Mol Phys, 2018, 35(4): 673 doi: 10.3969/j.issn.1000-0364.2018.04.023

    楊明宇, 張勃, 張旭, 等. 石墨烯和六方氮化硼納米片的幾何結構、電子結構、磁性及邊緣特性研究. 原子與分子物理學報, 2018, 35(4):673 doi: 10.3969/j.issn.1000-0364.2018.04.023
    [40] Gao Y, Ren W C, Ma T, et al. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS Nano, 2013, 7(6): 5199 doi: 10.1021/nn4009356
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數:  1537
  • HTML全文瀏覽量:  2391
  • PDF下載量:  138
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-04
  • 刊出日期:  2019-12-01

目錄

    /

    返回文章
    返回