-
摘要: 基于前驅體合成與氨氣氮化兩步法,通過對前驅體合成關鍵參數B源/N源比、分散劑種類、前驅體干燥方式進行調控,實現了大比表面積、少層氮化硼納米片材料的制備。其優化條件為以硼酸為硼源,尿素為氮源,硼酸與尿素摩爾比為1∶30,甲醇和去離子水作為分散劑,利用真空冷凍干燥方式合成前驅體。將前驅體在氨氣氣氛下900 ℃保溫3 h合成了氮化硼納米片。利用X射線衍射測試、X射線光電子能譜測試、拉曼光譜測試、熱重分析測試等對合成產物進行了物相和結構表征,利用掃描電子顯微鏡、原子力顯微鏡、透射電子顯微鏡、氮氣吸脫附曲線等對合成產物進行了形貌及比表面積表征。結果表明:合成的氮化硼為六方氮化硼納米片(h-BNNSs),純度高,形貌類石墨烯,層數為2~4層,厚度平均為1 nm,比表面積為871.8 m2·g?1,單次產物質量平均可達240 mg,合成產物平均產率可達96.7%。該方法簡單易操作,實現了大比表面積少層氮化硼的制備,有助于氮化硼在各應用領域的研究,如氮化硼/石墨烯復合材料、納米電子器件、污染物的吸附、儲氫等。Abstract: Hexagonal boron nitride nanosheets (h-BNNSs) are two-dimensional nanomaterials whose structure, similar to graphene, is called white graphene. They have excellent physical and chemical properties. Few-layered and monolayer h-BNNSs have more extensive applications compared to block BNs due to their wider band gap and stronger insulation. However, the existing preparation methods have the disadvantages of uncontrollable product size, low yield, high cost, and pollution. Researchers are striving to develop an efficient and cheap method, and some have tried to prepared h-BNNSs through evaporation and recrystallization. However, it is difficult to control morphology in this method and prepared products are usually thick with uneven size distribution. Meanwhile, vacuum freeze-drying has been widely used in functional porous ceramics due its simple operation, controllability, and environmental friendliness. In this study, based on the two-step process of precursor synthesis and ammonia nitriding, few-layered h-BNNSs with large surface areas were successfully synthesized on a large scale by controlling key factors of precursor synthesis, such as ratio of atoms B to N in the raw material, dispersant, and drying method. The optimum preparation was using boric acid and urea with a molar ratio of 1∶30 as the source of B and N, and using methanol/deionized water as dispersant to obtain the precursors by vacuum freeze drying. Precursors were then transformed from ammonia vapor to nitride for 3 h at 900 ℃. The product was characterized by X-Ray diffraction, X-ray photoelectron spectroscopy, Raman spectra, thermogravimetric analysis, and differential thermal analysis for phase and molecular structure, and scanning electron microscope, atomic force microscope, transmission electron microscope, and N2 adsorption-desorption isotherms for microstructure and specific surface area. Results indicate that the products are h-BNNSs with high purity, two to four atomic layers, 1 nm thickness, and with a high specific surface area of 871.8 m2·g?1, similar to the microstructure of graphene. Single product mass averages 240 mg and average yield is steadily 96.7%. This method is economical, simple, and easy to operate. It could achieve macro-synthesis of few-layered h-BNNSs with a large area, conducive to research on boron nitride in various field applications, such as boron nitride/graphene composite materials, nano-electronic devices, pollutant adsorption, hydrogen storage, etc.
-
Key words:
- hexagonal boron nitride /
- nanosheets /
- freeze drying /
- few-layers /
- precursor
-
表 1 少層h-BNNSs制備因素調控
Table 1. Experimental conditions of few-layer h-BNNSs
試樣編號 硼酸/尿素摩爾比 分散劑種類 前驅體制備干燥方法 1# 1∶10 乙醇水溶液 45 ℃水浴式蒸發結晶 2# 1∶20 乙醇水溶液 45 ℃水浴式蒸發結晶 3# 1∶30 乙醇水溶液 45 ℃水浴式蒸發結晶 4# 1∶30 甲醇水溶液 45 ℃水浴式蒸發結晶 5# 1∶30 甲醇水溶液 45 ℃鼓風干燥箱蒸發結晶 6# 1∶30 甲醇水溶液 冷凍干燥式蒸發結晶 www.77susu.com -
參考文獻
[1] Tang C C, Bando Y. Effect of BN coatings on oxidation resistance and field emission of SiC nanowires. Appl Phys Lett, 2003, 83(4): 659 doi: 10.1063/1.1595721 [2] Lorrette C, Weisbecker P, Jacques S, et al. Deposition and characterization of hex-BN coating on carbon fibres using tris (dimethylamino) borane precursor. J Eur Ceram Soc, 2007, 27(7): 2737 doi: 10.1016/j.jeurceramsoc.2006.10.010 [3] Hernandez E, Goze C, Bernier P, et al. Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett, 1998, 80(20): 4502 doi: 10.1103/PhysRevLett.80.4502 [4] Che J W, Cagin T, Goddard III W A. Thermal conductivity of carbon nanotubes. Nanotechnology, 2000, 11(2): 65 doi: 10.1088/0957-4484/11/2/305 [5] Han T W, Luo Y, Wang C Y. Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. J Phys D Appl Phys, 2013, 47(2): 025303 [6] Yu Y L, Chen H, Liu Y, et al. Superhydrophobic and superoleophilic porous boron nitride nanosheet/polyvinylidene fluoride composite material for oil-polluted water cleanup. Adv Mater Interfaces, 2015, 2(1): 1400267 doi: 10.1002/admi.201400267 [7] Liu H, Jin P, Xue Y M, et al. Photochemical synthesis of ultrafine cubic boron nitride nanoparticles under ambient conditions. Angew Chem Int Ed, 2015, 54(24): 7051 doi: 10.1002/anie.201502023 [8] Postole G, Caldararu M, Bonnetot B, et al. Influence of the support surface chemistry on the catalytic performances of PdO/BN catalysts. J Phys Chem C, 2008, 112(30): 11385 doi: 10.1021/jp803963e [9] Ma R Z, Bando Y, Zhu H W, et al. Hydrogen uptake in boron nitride nanotubes at room temperature. J Am Chem Soc, 2002, 124(26): 7672 doi: 10.1021/ja026030e [10] Lee K H, Shin H J, Lee J, et al. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett, 2012, 12(2): 714 doi: 10.1021/nl203635v [11] Han W Q, Wu L J, Zhu Y M, et al. Structure of chemically derived mono-and few-atomic-layer boron nitride sheets. Appl Phys Lett, 2008, 93(22): 223103 doi: 10.1063/1.3041639 [12] Li H, Zhang Q, Yap C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater, 2012, 22(7): 1385 doi: 10.1002/adfm.201102111 [13] Kim K K, Hsu A, Jia X T, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett, 2012, 12(1): 161 doi: 10.1021/nl203249a [14] Deng Y X, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano, 2014, 8(8): 8292 doi: 10.1021/nn5027388 [15] Cai Q R, Scullion D, Gan W, et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci Adv, 2019, 5(6): eaav0129 doi: 10.1126/sciadv.aav0129 [16] Pacile D, Meyer J C, Girit ? ?, et al. The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett, 2008, 92(13): 133107 doi: 10.1063/1.2903702 [17] Li X L, Hao X P, Zhao M W, et al. Exfoliation of hexagonal boron nitride by molten hydroxides. Adv Mater, 2013, 25(15): 2200 doi: 10.1002/adma.201204031 [18] Li Q, Yang T, Yang Q F, et al. Porous hexagonal boron nitride whiskers fabricated at low temperature for effective removal of organic pollutants from water. Ceram Int, 2016, 42(7): 8754 doi: 10.1016/j.ceramint.2016.02.114 [19] Gibb A L, Alem N, Chen J H, et al. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J Am Chem Soc, 2013, 135(18): 6758 doi: 10.1021/ja400637n [20] Cao L, Emami S, Lafdi K. Large-scale exfoliation of hexagonal boron nitride nanosheets in liquid phase. Mater Express, 2014, 4(2): 165 doi: 10.1166/mex.2014.1155 [21] Zhao D, Ke R L, Zou X, et al. Research progress on preparation technology of boron nitride nanosheets. J Funct Mater, 2016, 12(47): 12071趙迪, 柯瑞林, 鄒雄, 等. 氮化硼納米片制備方法研究進展. 功能材料, 2016, 12(47):12071 [22] Hou X M, Qiu P L, Yang T, et al. Synthesis of titanium nitride nanopowder at low temperature from the combustion synthesized precursor and the thermal stability. J Alloys Compd, 2014, 615: 838 doi: 10.1016/j.jallcom.2014.07.078 [23] Wang X F, Liu J C, Hou F, et al. Synthesis of ZrC-SiC powders from hybrid liquid precursors with improved oxidation resistance. J Am Ceram Soc, 2015, 98(1): 197 doi: 10.1111/jace.13274 [24] Liu D, Lei W W, Qin S, et al. Template-free synthesis of functional 3D BN architecture for removal of dyes from water. Sci Rep-UK, 2014, 4: 4453 [25] Li J Q, Zhou J, Hao H J, et al. Preparation of hexagonal boron nitride nanosheet. J Shaanxi Univ Sci Technol, 2015, 33(6): 40李軍奇, 周健, 郝紅娟, 等. 六方氮化硼納米片的制備. 陜西科技大學學報:自然科學版, 2015, 33(6):40 [26] Wu P W, Zhu W S, Chao Y H, et al. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. Chem Commun, 2016, 52(1): 144 doi: 10.1039/C5CC07830J [27] Luo W, Wang Y B, Hitz E, et al. Solution processed boron nitride nanosheets: synthesis, assemblies and emerging applications. Adv Funct Mater, 2017, 27(31): 1701450 doi: 10.1002/adfm.201701450 [28] Xi X L, Nie Z R, Yang J C, et al. Preparation and characterization of Ce-W composite nanopowder. Mat Sci Eng A, 2005, 394(1-2): 360 doi: 10.1016/j.msea.2004.11.052 [29] Luan W L, Gao L, Guo J K. Study on drying stage of nanoscale powder preparation. Nanostruct Mater, 1998, 10(7): 1119 doi: 10.1016/S0965-9773(98)00142-1 [30] Tu X F, Zhou Y K, Song Y J. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries. Appl Surf Sci, 2017, 400: 329 doi: 10.1016/j.apsusc.2016.12.220 [31] Guo D Y, Zhao Y J, Ling C, et al. Vacuum freeze-drying assisted preparation of spherical AlB2 powders with ultrafine microstructure. Ceram Int, 2018, 44(6): 6451 doi: 10.1016/j.ceramint.2018.01.040 [32] Annie D, Chandramouli V, Anthonysamy S, et al. Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders. J Nucl Mater, 2017, 484: 51 doi: 10.1016/j.jnucmat.2016.11.019 [33] Liu R P, Xu T T, Wang C A. A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram Int, 2016, 42(2): 2907 doi: 10.1016/j.ceramint.2015.10.148 [34] Lin J, Xu L L, Huang Y, et al. Ultrafine porous boron nitride nanofibers synthesized via a freeze-drying and pyrolysis process and their adsorption properties. RSC Adv, 2016, 6(2): 1253 doi: 10.1039/C5RA23426C [35] Yuan S D. Preparation and Properties of BN Nano Materials[Dissertation]. Wuhan: Huazhong University of Science and Technology, 2009袁頌東. 氮化硼納米材料的制備及性能研究[學位論文]. 武漢: 華中科技大學, 2009 [36] Wen Y, Shang X Z, Dong J, et al. Ultraclean and large-area monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nanotechnology, 2015, 26(27): 275601 doi: 10.1088/0957-4484/26/27/275601 [37] Gorbachev R V, Riaz I, Nair R R, et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small, 2011, 7(4): 465 doi: 10.1002/smll.201001628 [38] Tay R Y, Griep M H, Mallick G, et al. Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper. Nano Lett, 2014, 14(2): 839 doi: 10.1021/nl404207f [39] Yang M Y, Zhang B, Zhang X, et al. Study on the geometrical structures, electronic structures, magnetic properties and edge effects of graphene and hexagonal boron nitride nanosheets. J Atom Mol Phys, 2018, 35(4): 673 doi: 10.3969/j.issn.1000-0364.2018.04.023楊明宇, 張勃, 張旭, 等. 石墨烯和六方氮化硼納米片的幾何結構、電子結構、磁性及邊緣特性研究. 原子與分子物理學報, 2018, 35(4):673 doi: 10.3969/j.issn.1000-0364.2018.04.023 [40] Gao Y, Ren W C, Ma T, et al. Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS Nano, 2013, 7(6): 5199 doi: 10.1021/nn4009356 -