<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Pt?Au?Cu 三元核殼結構納米線的制備與結構表征

楊濤 楊占兵 李釩

楊濤, 楊占兵, 李釩. Pt?Au?Cu 三元核殼結構納米線的制備與結構表征[J]. 工程科學學報, 2019, 41(12): 1550-1557. doi: 10.13374/j.issn2095-9389.2019.07.04.031
引用本文: 楊濤, 楊占兵, 李釩. Pt?Au?Cu 三元核殼結構納米線的制備與結構表征[J]. 工程科學學報, 2019, 41(12): 1550-1557. doi: 10.13374/j.issn2095-9389.2019.07.04.031
YANG Tao, YANG Zhan-bing, LI Fan. Synthesis and structural characterization of Pt?Au?Cu ternary core-shell nanowires[J]. Chinese Journal of Engineering, 2019, 41(12): 1550-1557. doi: 10.13374/j.issn2095-9389.2019.07.04.031
Citation: YANG Tao, YANG Zhan-bing, LI Fan. Synthesis and structural characterization of Pt?Au?Cu ternary core-shell nanowires[J]. Chinese Journal of Engineering, 2019, 41(12): 1550-1557. doi: 10.13374/j.issn2095-9389.2019.07.04.031

Pt?Au?Cu 三元核殼結構納米線的制備與結構表征

doi: 10.13374/j.issn2095-9389.2019.07.04.031
基金項目: 國家自然科學基金資助項目(51471027,51472009,51172007)
詳細信息
    通訊作者:

    E-mail:yangzhanbing@ustb.edu.cn

  • 中圖分類號: O643.36

Synthesis and structural characterization of Pt?Au?Cu ternary core-shell nanowires

More Information
  • 摘要: 通過水溶液還原法在80 ℃合成Cu納米線,再利用液相還原法在低溫水溶液中將Au負載于其表面,最后通過暴露的Cu納米線與Pt前驅體鹽發生Galvanic置換反應,將Pt負載在Au?Cu納米線表面,構成Pt?Au?Cu三元核殼結構納米線。根據對樣品形貌、結構的表征和分析,探討了Pt?Au?Cu納米線的合成機理。結果表明:合成納米線物相組成為單質Cu,平均直徑約為83 nm;負載Au后的Au?Cu納米線平均直徑約為90 nm,表面附著的小顆粒為單質Au顆粒,構成了核殼結構;負載Pt后得到Pt?Au?Cu三元核殼結構納米線,平均直徑約為120 nm。Cu納米線表面Au顆粒的形成依賴于異相形核與長大機制,并遵循先層狀后島狀生長的混合生長模式。負載Pt過程中存在Pt、Cu互擴散,使得最終納米線表面多為Pt顆粒而整體則形成CuPt 合金相。

     

  • 圖  1  合成樣品的掃描電鏡和透射電鏡圖. (a,d) Cu納米線;(b, e) Au?Cu納米線;(c,f) Pt?Au?Cu納米線 (插圖為實際產物的照片)

    Figure  1.  SEM and TEM images of as-synthesized sample: (a,d) Cu nanowires;(b, e) Au?Cu nanowires;(c,f) Pt?Au?Cu nanowires (insets are photos of actual product)

    圖  2  納米線的X射線衍射圖譜

    Figure  2.  X-ray diffraction patterns of as-synthesized nanowires

    圖  3  Pt?Au?Cu納米線的高角環形暗場像(a)和元素面掃分布圖(b~d)

    Figure  3.  HAADF image of Pt?Au?Cu nanowires (a) and corresponding EDS mapping images (b~d)

    圖  4  抗壞血酸作還原劑得到產物的掃描電鏡圖

    Figure  4.  SEM images of product obtained by using ascorbic acid as a reduction agent

    圖  5  25 ℃時Cu?H2O系電位pH圖

    Figure  5.  Pourbaix diagram of Cu?H2O system at 25 ℃

    圖  6  不同反應時間下的產物的透射電鏡圖(a)以及Cu納米線表面附著顆粒數量與反應時間關系圖(b)

    Figure  6.  TEM images of product at different reaction time (a) and relationship between the number of particles attached to the surface of Cu nanowires and reaction time (b)

    圖  7  Cu納米線表面顆粒直徑隨時間變化圖

    Figure  7.  Relationship between diameter of the particle attached to surface of Cu nanowires and time variation

    圖  8  Pt?Au?Cu納米線透射電鏡圖(a)及圖中紅色區域高分辨濾波圖(b)

    Figure  8.  TEM image of Pt?Au?Cu nanowires (a) and the inverse fast Fourier-filtered Fourier transformed (IFFT) image of the red box regions in Fig. 8(a)(b)

    表  1  實驗所用試劑

    Table  1.   Reagents used in the experiment

    試劑分子式純度生產廠家
    硝酸銅Cu(NO3)2 ·3H2O分析純西亞化學工業有限公司
    氫氧化鈉NaOH分析純西亞化學工業有限公司
    乙二胺C2H8N2分析純西亞化學工業有限公司
    抗壞血酸C6H8O6優級純西亞化學工業有限公司
    水合肼N2H4·xH2O50%~60%Sigma-Aldrich
    氯金酸HAuCl4·4H2O分析純天津光復精細化工研究所
    氯鉑酸H2PtCl6·6H2O分析純天津光復精細化工研究所
    聚乙烯吡咯烷酮(C6H9NO)n化學純北京化學試劑公司
    無水乙醇C2H5OH分析純北京化工廠
    下載: 導出CSV

    表  2  Cu和Au的基本物理常數

    Table  2.   Fundamental physical constants of Cu and Au

    元素點陣常數/nm電負性鍵解離能/(kJ·mol?1)
    Cu0.36151.9Au?Cu: 227.1
    Au0.40782.4Au?Au: 226.2
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wang J Y, Wang H L, Fan Y. Techno-economic challenges of fuel cell commercialization. Engineering, 2018, 4(3): 352 doi: 10.1016/j.eng.2018.05.007
    [2] Wang Y J, Zhao N N, Fang B Z, et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem Rev, 2015, 115(9): 3433 doi: 10.1021/cr500519c
    [3] Greeley J, Stephens I E L, Bondarenko A S, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem, 2009, 1(7): 552 doi: 10.1038/nchem.367
    [4] Ma S Y, Li H H, Hu B C, et al. Synthesis of low Pt-based quaternary PtPdAuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J Am Chem Soc, 2017, 139(16): 5890 doi: 10.1021/jacs.7b01482
    [5] Garlyyev B, Kratzl K, Rück M, et al. Optimizing the size of platinum nanoparticles for enhanced mass activity in the electrochemical oxygen reduction reaction. Angew Chem Int Ed, 2019, 58(28): 9596 doi: 10.1002/anie.201904492
    [6] Shao M H, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett, 2011, 11(9): 3714 doi: 10.1021/nl2017459
    [7] Park J, Zhang L, Choi S I, et al. Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction. ACS Nano, 2015, 9(3): 2635 doi: 10.1021/nn506387w
    [8] Gómez-Marín A M, Feliu J M. Oxygen reduction on nanostructured platinum surfaces in acidic media: promoting effect of surface steps and ideal response of Pt(111). Catal Today, 2015, 244: 172 doi: 10.1016/j.cattod.2014.05.009
    [9] Cui C H, Gan L, Heggen M, et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nature Mater, 2013, 12(8): 765 doi: 10.1038/nmat3668
    [10] Chen G Y, Kuttiyiel K A, Li M, et al. Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. J Mater Chem A, 2018, 6(42): 20725 doi: 10.1039/C8TA06686H
    [11] Bao S X, Vara M, Yang X, et al. Facile synthesis of Pd@Pt3-4l core-shell octahedra with a clean surface and thus enhanced activity toward oxygen reduction. Chem Cat Chem, 2017, 9(3): 414
    [12] Cui C H, Yu S H. Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic acitivity for fuel cell applications. Acc Chem Res, 2012, 46(7): 1427
    [13] Lu Y X, Du S F, Steinberger-Wilckens R. One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cells-a review. Appl Catal B, 2016, 199: 292 doi: 10.1016/j.apcatb.2016.06.022
    [14] Zhang J T, Li C M. Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem Soc Rev, 2012, 41(21): 7016 doi: 10.1039/c2cs35210a
    [15] Koenigsmann C, Santulli A C, Gong K P, et al. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J Am Chem Soc, 2011, 133(25): 9783 doi: 10.1021/ja111130t
    [16] Cherevko S, Xing X L, Chung C H. Pt and Pd decorated Au nanowires: extremely high activity of ethanol oxidation in alkaline media. Electrochim Acta, 2011, 56(16): 5771 doi: 10.1016/j.electacta.2011.04.052
    [17] Cui C H, Li H H, Liu X J, et al. Surface composition and lattice ordering-controlled activity and durability of CuPt electrocatalysts for oxygen reduction reaction. ACS Catal, 2012, 2(6): 916 doi: 10.1021/cs300058c
    [18] Niu Z Q, Cui F, Yu Y, et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J Am Chem Soc, 2017, 139(21): 7348 doi: 10.1021/jacs.7b02884
    [19] Stamenkovic V R, Mun B S, Arenz M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater, 2007, 6(3): 241 doi: 10.1038/nmat1840
    [20] Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809): 220 doi: 10.1126/science.1134569
    [21] Wang C, Van der Vliet D, More K L, et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett, 2010, 11(3): 919
    [22] Rathmell A R, Wiley B J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv Mater, 2011, 23(41): 4798 doi: 10.1002/adma.201102284
    [23] Han M, Liu S L, Zhang L Y, et al. Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction. ACS Appl Mater Interfaces, 2012, 4(12): 6654 doi: 10.1021/am301814y
    [24] Hong W, Wang J, Wang E. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Res, 2015, 8(7): 2308 doi: 10.1007/s12274-015-0741-y
    [25] Peng Z M, Yang H. Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today, 2009, 4(2): 143 doi: 10.1016/j.nantod.2008.10.010
    [26] Xie X J, Lü K, Yan M, et al. Potential-pH chart for copper-water system and controlling pH of internal cooling water to prevent generator from corrosion. Corros Sci Prot Technol, 2007, 19(3): 162 doi: 10.3969/j.issn.1002-6495.2007.03.002

    謝學軍, 呂珂, 晏敏, 等. 銅水體系電位-pH圖與發電機內冷水pH調節防腐. 腐蝕科學與防護技術, 2007, 19(3):162 doi: 10.3969/j.issn.1002-6495.2007.03.002
    [27] Yang X Z, Yang W. Metal Corrosion Electrochemical Thermodynamics: Pourbaix Diagram and Their Application. Beijing: Chemical Industry Press, 1991

    楊熙珍, 楊武. 金屬腐蝕電化學熱力學: 電位-pH圖及其應用. 北京: 化學工業出版社, 1991
    [28] Goia D, Matijevi? E. Tailoring the particle size of monodispersed colloidal gold. Colloids Surf A, 1999, 146(1-3): 139 doi: 10.1016/S0927-7757(98)00790-0
    [29] Bauer E, van der Merwe J H. Structure and growth of crystalline superlattices: from monolayer to superlattice. Phys Rev B, 1986, 33(6): 3657 doi: 10.1103/PhysRevB.33.3657
    [30] Fan F R, Liu D Y, Wu Y F, et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc, 2008, 130(22): 6949 doi: 10.1021/ja801566d
    [31] Markov I V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy. 3rd Ed. Singapore: World Scientific, 2016
    [32] Wang Z L, Ahmad T S, El Sayed M A. Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes. Surf Sci, 1997, 380(2-3): 302 doi: 10.1016/S0039-6028(97)05180-7
    [33] Sarkar A, Manthiram A. Synthesis of Pt@Cu core-shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells. J Phys Chem C, 2010, 114(10): 4725 doi: 10.1021/jp908933r
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  1311
  • HTML全文瀏覽量:  932
  • PDF下載量:  22
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-07-04
  • 刊出日期:  2019-12-01

目錄

    /

    返回文章
    返回