<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于非線性模型預測控制的自動泊車路徑跟蹤

顧青 白國星 孟宇 劉立 羅維東 甘鑫

顧青, 白國星, 孟宇, 劉立, 羅維東, 甘鑫. 基于非線性模型預測控制的自動泊車路徑跟蹤[J]. 工程科學學報, 2019, 41(7): 947-954. doi: 10.13374/j.issn2095-9389.2019.07.014
引用本文: 顧青, 白國星, 孟宇, 劉立, 羅維東, 甘鑫. 基于非線性模型預測控制的自動泊車路徑跟蹤[J]. 工程科學學報, 2019, 41(7): 947-954. doi: 10.13374/j.issn2095-9389.2019.07.014
GU Qing, BAI Guo-xing, MENG Yu, LIU Li, LUO Wei-dong, GAN Xin. Path tracking of automatic parking based on nonlinear model predictive control[J]. Chinese Journal of Engineering, 2019, 41(7): 947-954. doi: 10.13374/j.issn2095-9389.2019.07.014
Citation: GU Qing, BAI Guo-xing, MENG Yu, LIU Li, LUO Wei-dong, GAN Xin. Path tracking of automatic parking based on nonlinear model predictive control[J]. Chinese Journal of Engineering, 2019, 41(7): 947-954. doi: 10.13374/j.issn2095-9389.2019.07.014

基于非線性模型預測控制的自動泊車路徑跟蹤

doi: 10.13374/j.issn2095-9389.2019.07.014
基金項目: 

國家重點研發計劃資助項目 2018YFC0604403

國家重點研發計劃資助項目 2016YFC0802905

國家高技術研究發展計劃資助項目 2011AA060408

中央高校基本科研業務費專項資金資助項目 FRF-TP-17-010A2

詳細信息
    通訊作者:

    孟宇, E-mail: myu@ustb.edu.cn

  • 中圖分類號: U471.1

Path tracking of automatic parking based on nonlinear model predictive control

More Information
  • 摘要: 與行駛速度較高的其他無人駕駛工況相比, 自動泊車時參考路徑的曲率較大, 因此車輛轉向輪轉角速度的限制等系統約束條件會嚴重影響自動泊車路徑跟蹤控制器的性能. 為了解決這一問題, 提出了基于非線性模型預測控制的自動泊車路徑跟蹤控制器, 并在MATLAB/Simulink和PreScan聯合仿真環境中將該控制器與基于線性時變模型預測控制的控制器進行了對比. 仿真結果表明非線性模型預測控制器可以實現多約束條件下的自動泊車, 泊車完成后車輛航向與車位中線的夾角為0.0189 rad, 車輛后橋中點與車位中線的距離為0.1045 m, 僅為車身寬度的5.56%. 相比線性時變模型預測控制器, 非線性模型預測控制器具有泊車精度更高、安全裕度更大、泊車耗時更少等優勢. 在實時性方面, 該控制器也能夠滿足自動泊車的需求.

     

  • 圖  1  車輛運動學模型

    Figure  1.  Kinematic model of the vehicle

    圖  2  PreScan模型

    Figure  2.  PreScan model

    圖  3  橫向誤差和航向誤差的定義

    Figure  3.  Definitions of the displacement error and heading error

    圖  4  第一組仿真軌跡.(a)非線性模型預測控制軌跡; (b)線性時變模型預測控制軌跡

    Figure  4.  Trajectory of the first set of simulation: (a) trajectory of NMPC; (b) trajectory of LTV-MPC

    圖  5  第一組仿真控制輸入.(a)縱向速度; (b)轉向輪轉角

    Figure  5.  Control input of the first set of simulation: (a) longitudinal velocity; (b) angle of steering wheel

    圖  6  第一組仿真誤差.(a)橫向誤差; (b)航向誤差

    Figure  6.  Error of the first set of simulation: (a) displacement error; (b) heading error

    圖  7  第一組仿真運算時間

    Figure  7.  Computation time of the first set of simulation

    圖  8  第二組仿真軌跡.(a)非線性模型預測控制軌跡; (b)改進后非線性模型預測控制軌跡

    Figure  8.  Trajectory of the second set of simulation: (a) trajectory of NMPC; (b) trajectory of improved NMPC

    圖  9  第二組仿真控制輸入. (a)縱向速度; (b)轉向輪轉角

    Figure  9.  Control input of the second set of simulation: (a) longitudinal velocity; (b) angle of steering wheel

    圖  10  第二組仿真誤差. (a)橫向誤差; (b)航向誤差

    Figure  10.  Error of the second set of simulation: (a) displacement error; (b) heading error

    圖  11  第二組仿真運算時間

    Figure  11.  Computation time of the second set of simulation

    表  1  控制器參數

    Table  1.   Parameters of controllers

    模型 Q1 Q2 Q3 Q4
    NMPC $\left[\begin{array}{ccc}1000 & 0 & 0 \\ 0 & 1000 & 0 \\ 0 & 0 & 30000\end{array}\right]$ $\left[\begin{array}{cc}50 & 0 \\ 0 & 50\end{array}\right]$ 50 10
    LTV-MPC $\left[\begin{array}{ccc}1000 & 0 & 0 \\ 0 & 1000 & 0 \\ 0 & 0 & 30000\end{array}\right]$ $\left[\begin{array}{cc}50 & 0 \\ 0 & 50\end{array}\right]$ 50 10
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Vorobieva H, Glaser S, Minoiu-Enache N, et al. Automatic parallel parking in tiny spots: path planning and control. IEEE Trans Intell Transp Syst, 2015, 16(1): 396 doi: 10.1109/TITS.2014.2335054
    [2] Vorobieva H, Minoiu-Enache N, Glaser S, et al. Geometric continuous-curvature path planning for automatic parallel parking//10th IEEE International Conference on Networking, Sensing and Control. Evry, 2013: 418 http://ieeexplore.ieee.org/document/6548775/citations
    [3] Vorobieva H, Glaser S, Minoiu-Enache N, et al. Automatic parallel parking with geometric continuous-curvature path planning//2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn, 2014: 465 http://ieeexplore.ieee.org/document/6856443
    [4] Kapitanyuk Y A, Proskurnikov A V, Cao M. A guiding vector-field algorithm for path-following control of nonholonomic mobile robots. IEEE Trans Control Syst Technol, 2018, 26(4): 1372 doi: 10.1109/TCST.2017.2705059
    [5] Moustris G P, Tzafestas S G. Switching fuzzy tracking control for mobile robots under curvature constraints. Control Eng Pract, 2011, 19(1): 45 doi: 10.1016/j.conengprac.2010.08.008
    [6] Wang Y J, Wang X K, Zhao S L, et al. Vector field based sliding mode control of curved path following for miniature unmanned aerial vehicles in winds. J Syst Sci Complex, 2018, 31(1): 302 doi: 10.1007/s11424-018-8006-y
    [7] Shin J, Huh J, Park Y. Asymptotically stable path following for lateral motion of an unmanned ground vehicle. Control Eng Pract, 2015, 40: 102 doi: 10.1016/j.conengprac.2015.03.006
    [8] Rains G C, Faircloth A G, Thai C, et al. Evaluation of a simple pure pursuit path-following algorithm for an autonomous, articulated-steer vehicle. Appl Eng Agric, 2014, 30(3): 367 doi: 10.13140/2.1.3097.6642
    [9] Guo K H, Li H, Song X L, et al. Study on path tracking control strategy of automatic parking system. Chin J Highw Transport, 2015, 28(9): 106 doi: 10.3969/j.issn.1001-7372.2015.09.014

    郭孔輝, 李紅, 宋曉琳, 等. 自動泊車系統路徑跟蹤控制策略研究. 中國公路學報, 2015, 28(9): 106 doi: 10.3969/j.issn.1001-7372.2015.09.014
    [10] Zhao L F, Xu L, Chen W W. Path-tracking of APS based on ADRC. China Mech Eng, 2017, 28(8): 966 doi: 10.3969/j.issn.1004-132X.2017.08.015

    趙林峰, 徐磊, 陳無畏. 基于自抗擾控制的自動泊車路徑跟蹤. 中國機械工程, 2017, 28(8): 966 doi: 10.3969/j.issn.1004-132X.2017.08.015
    [11] Cheng K P, Chen H. Path following of a fully-automatic parking assist system. Automobile Technol, 2013(10): 26 doi: 10.3969/j.issn.1000-3703.2013.10.007

    程昆朋, 陳慧. 全自動泊車系統的路徑跟隨. 汽車技術, 2013(10): 26 doi: 10.3969/j.issn.1000-3703.2013.10.007
    [12] Choi S, Boussard C, D'Andréa-Novel B. Easy path planning and robust control for automatic parallel parking. IFAC Proc Vol, 2011, 44(1): 656 doi: 10.3182/20110828-6-IT-1002.01458
    [13] Jiang H B, Li C X, Ma S D, et al. Path tracking control of automatic parking for intelligent vehicle based on non-smooth control strategy. J Jiangsu Univ Nat Sci Ed, 2017, 38(5): 497 https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201705001.htm

    江浩斌, 李臣旭, 馬世典, 等. 智能車輛自動泊車路徑跟蹤的非光滑控制策略. 江蘇大學學報: 自然科學版, 2017, 38(5): 497 https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201705001.htm
    [14] Jiang H B, Wu D, Shen Z N, et al. Study of automatic parking path tracking control system based on cloud generator. J Mach Des, 2016, 33(9): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ201609013.htm

    江浩斌, 吳狄, 沈崢楠, 等. 基于云發生器的自動泊車路徑跟蹤控制研究. 機械設計, 2016, 33(9): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ201609013.htm
    [15] Jiang H B, Shen Z N, Ma S D. Automatic parking path following control based on double closed-loop sliding mode structure. J Chongqing Inst Technol Nat Sci, 2017, 31(10): 6 doi: 10.3969/j.issn.1674-8425(z).2017.10.002

    江浩斌, 沈崢楠, 馬世典. 基于雙閉環滑模結構的自動泊車路徑跟蹤控制. 重慶理工大學學報: 自然科學, 2017, 31(10): 6 doi: 10.3969/j.issn.1674-8425(z).2017.10.002
    [16] Gong J W, Xu W, Jiang Y, et al. Multi-constrained model predictive control for autonomous ground vehicle trajectory tracking. J Beijing Inst Technol, 2015, 24(4): 441 http://www.cqvip.com/main/zcps.aspx?c=1&id=668018358
    [17] Xi Y G, Li D W, Lin S. Model predictive control-status and challenges. Acta Autom Sin, 2013, 39(3): 222 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201303005.htm

    席裕庚, 李德偉, 林姝. 模型預測控制——現狀與挑戰. 自動化學報, 2013, 39(3): 222 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201303005.htm
    [18] Backman J, Oksanen T, Visala A. Navigation system for agricultural machines: Nonlinear model predictive path tracking. Comput Electron Agric, 2012, 82: 32 doi: 10.1016/j.compag.2011.12.009
    [19] Faulwasser T, Weber T, Zometa P, et al. Implementation of nonlinear model predictive path-following control for an industrial robot. IEEE Trans Control Syst Technol, 2017, 25(4): 1505 doi: 10.1109/TCST.2016.2601624
    [20] Wang Y, Zhu X P, Zhou Z, et al. UAV path following in 3-D dynamic environment. Robot, 2014, 36(1): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201401012.htm

    王懌, 祝小平, 周洲, 等. 3維動態環境下的無人機路徑跟蹤算法. 機器人, 2014, 36(1): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201401012.htm
    [21] Ma C J, Li F, Liao C, et al. Path following based on model predictive control for automatic parking system[J/OL]. SAE Technical Paper(2017-09-23)[2018-11-13]. https://www.sae.org/publications/technical-papers/content/2017-01-1952/
    [22] Bai G X, Meng Y, Gu Q, et al. Path tracking of car-like vehicles based on variable weight model predictive control//2018 Chinese Automation Congress. Xi'an, 2018: 1943 http://www.researchgate.net/publication/331418842_Path_Tracking_of_Car-Like_Vehicles_Based_on_Variable_Weight_Model_Predictive_Control/download
  • 加載中
圖(11) / 表(1)
計量
  • 文章訪問數:  1169
  • HTML全文瀏覽量:  481
  • PDF下載量:  83
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-11-13
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回