-
摘要: 與行駛速度較高的其他無人駕駛工況相比, 自動泊車時參考路徑的曲率較大, 因此車輛轉向輪轉角速度的限制等系統約束條件會嚴重影響自動泊車路徑跟蹤控制器的性能. 為了解決這一問題, 提出了基于非線性模型預測控制的自動泊車路徑跟蹤控制器, 并在MATLAB/Simulink和PreScan聯合仿真環境中將該控制器與基于線性時變模型預測控制的控制器進行了對比. 仿真結果表明非線性模型預測控制器可以實現多約束條件下的自動泊車, 泊車完成后車輛航向與車位中線的夾角為0.0189 rad, 車輛后橋中點與車位中線的距離為0.1045 m, 僅為車身寬度的5.56%. 相比線性時變模型預測控制器, 非線性模型預測控制器具有泊車精度更高、安全裕度更大、泊車耗時更少等優勢. 在實時性方面, 該控制器也能夠滿足自動泊車的需求.Abstract: In megacities, the number of vehicles has rapidly grown. Automatic parking, a special type of unmanned driving, has become an important technology to ease parking difficulties. Path tracking is also a core part of automatic parking. However, during automatic parking, the curvature of the reference path is very large. This poses a challenge in automatic parking and is different from that in high-speed unmanned driving. When the curvature of the reference path is large, the constraints of the system severely restrain the path tracking performance. These constraints include the limit of the steering wheel angle speed. Applying model predictive control is a good way to handle multiple constraints. Recently, a path tracking controller for automatic parking based on linear time-varying model predictive control has been reported. However, for automatic parking, the accuracy of the linearized prediction model is still insufficient. To solve this problem, a path tracking controller based on nonlinear model predictive control was proposed in this paper. This controller was compared with the controller based on linear time-varying model predictive control. The simulation environment is a combination of MATLAB/Simulink and PreScan. The simulation results show that the proposed controller could complete automatic parking with multiple constraints. After the parking was completed, the angle between the vehicle heading and the center line of the parking space was 0.0189 rad. The distance between the midpoint of the rear axle of the vehicle and the center line of the parking space was 0.1045 m. This distance was only 5.56% of the width of the vehicle body. Compared with the controller based on linear time-varying model predictive control, the proposed controller for automatic parking exhibited a higher parking precision, larger safety margin, and less parking time. In terms of real-time performance, the proposed controller could also meet the requirements for automatic parking.
-
Key words:
- vehicle /
- automatic parking /
- path tracking /
- motion control /
- nonlinear model predictive control
-
表 1 控制器參數
Table 1. Parameters of controllers
模型 Q1 Q2 Q3 Q4 NMPC $\left[\begin{array}{ccc}1000 & 0 & 0 \\ 0 & 1000 & 0 \\ 0 & 0 & 30000\end{array}\right]$ $\left[\begin{array}{cc}50 & 0 \\ 0 & 50\end{array}\right]$ 50 10 LTV-MPC $\left[\begin{array}{ccc}1000 & 0 & 0 \\ 0 & 1000 & 0 \\ 0 & 0 & 30000\end{array}\right]$ $\left[\begin{array}{cc}50 & 0 \\ 0 & 50\end{array}\right]$ 50 10 www.77susu.com -
參考文獻
[1] Vorobieva H, Glaser S, Minoiu-Enache N, et al. Automatic parallel parking in tiny spots: path planning and control. IEEE Trans Intell Transp Syst, 2015, 16(1): 396 doi: 10.1109/TITS.2014.2335054 [2] Vorobieva H, Minoiu-Enache N, Glaser S, et al. Geometric continuous-curvature path planning for automatic parallel parking//10th IEEE International Conference on Networking, Sensing and Control. Evry, 2013: 418 http://ieeexplore.ieee.org/document/6548775/citations [3] Vorobieva H, Glaser S, Minoiu-Enache N, et al. Automatic parallel parking with geometric continuous-curvature path planning//2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn, 2014: 465 http://ieeexplore.ieee.org/document/6856443 [4] Kapitanyuk Y A, Proskurnikov A V, Cao M. A guiding vector-field algorithm for path-following control of nonholonomic mobile robots. IEEE Trans Control Syst Technol, 2018, 26(4): 1372 doi: 10.1109/TCST.2017.2705059 [5] Moustris G P, Tzafestas S G. Switching fuzzy tracking control for mobile robots under curvature constraints. Control Eng Pract, 2011, 19(1): 45 doi: 10.1016/j.conengprac.2010.08.008 [6] Wang Y J, Wang X K, Zhao S L, et al. Vector field based sliding mode control of curved path following for miniature unmanned aerial vehicles in winds. J Syst Sci Complex, 2018, 31(1): 302 doi: 10.1007/s11424-018-8006-y [7] Shin J, Huh J, Park Y. Asymptotically stable path following for lateral motion of an unmanned ground vehicle. Control Eng Pract, 2015, 40: 102 doi: 10.1016/j.conengprac.2015.03.006 [8] Rains G C, Faircloth A G, Thai C, et al. Evaluation of a simple pure pursuit path-following algorithm for an autonomous, articulated-steer vehicle. Appl Eng Agric, 2014, 30(3): 367 doi: 10.13140/2.1.3097.6642 [9] Guo K H, Li H, Song X L, et al. Study on path tracking control strategy of automatic parking system. Chin J Highw Transport, 2015, 28(9): 106 doi: 10.3969/j.issn.1001-7372.2015.09.014郭孔輝, 李紅, 宋曉琳, 等. 自動泊車系統路徑跟蹤控制策略研究. 中國公路學報, 2015, 28(9): 106 doi: 10.3969/j.issn.1001-7372.2015.09.014 [10] Zhao L F, Xu L, Chen W W. Path-tracking of APS based on ADRC. China Mech Eng, 2017, 28(8): 966 doi: 10.3969/j.issn.1004-132X.2017.08.015趙林峰, 徐磊, 陳無畏. 基于自抗擾控制的自動泊車路徑跟蹤. 中國機械工程, 2017, 28(8): 966 doi: 10.3969/j.issn.1004-132X.2017.08.015 [11] Cheng K P, Chen H. Path following of a fully-automatic parking assist system. Automobile Technol, 2013(10): 26 doi: 10.3969/j.issn.1000-3703.2013.10.007程昆朋, 陳慧. 全自動泊車系統的路徑跟隨. 汽車技術, 2013(10): 26 doi: 10.3969/j.issn.1000-3703.2013.10.007 [12] Choi S, Boussard C, D'Andréa-Novel B. Easy path planning and robust control for automatic parallel parking. IFAC Proc Vol, 2011, 44(1): 656 doi: 10.3182/20110828-6-IT-1002.01458 [13] Jiang H B, Li C X, Ma S D, et al. Path tracking control of automatic parking for intelligent vehicle based on non-smooth control strategy. J Jiangsu Univ Nat Sci Ed, 2017, 38(5): 497 https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201705001.htm江浩斌, 李臣旭, 馬世典, 等. 智能車輛自動泊車路徑跟蹤的非光滑控制策略. 江蘇大學學報: 自然科學版, 2017, 38(5): 497 https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201705001.htm [14] Jiang H B, Wu D, Shen Z N, et al. Study of automatic parking path tracking control system based on cloud generator. J Mach Des, 2016, 33(9): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ201609013.htm江浩斌, 吳狄, 沈崢楠, 等. 基于云發生器的自動泊車路徑跟蹤控制研究. 機械設計, 2016, 33(9): 61 https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ201609013.htm [15] Jiang H B, Shen Z N, Ma S D. Automatic parking path following control based on double closed-loop sliding mode structure. J Chongqing Inst Technol Nat Sci, 2017, 31(10): 6 doi: 10.3969/j.issn.1674-8425(z).2017.10.002江浩斌, 沈崢楠, 馬世典. 基于雙閉環滑模結構的自動泊車路徑跟蹤控制. 重慶理工大學學報: 自然科學, 2017, 31(10): 6 doi: 10.3969/j.issn.1674-8425(z).2017.10.002 [16] Gong J W, Xu W, Jiang Y, et al. Multi-constrained model predictive control for autonomous ground vehicle trajectory tracking. J Beijing Inst Technol, 2015, 24(4): 441 http://www.cqvip.com/main/zcps.aspx?c=1&id=668018358 [17] Xi Y G, Li D W, Lin S. Model predictive control-status and challenges. Acta Autom Sin, 2013, 39(3): 222 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201303005.htm席裕庚, 李德偉, 林姝. 模型預測控制——現狀與挑戰. 自動化學報, 2013, 39(3): 222 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201303005.htm [18] Backman J, Oksanen T, Visala A. Navigation system for agricultural machines: Nonlinear model predictive path tracking. Comput Electron Agric, 2012, 82: 32 doi: 10.1016/j.compag.2011.12.009 [19] Faulwasser T, Weber T, Zometa P, et al. Implementation of nonlinear model predictive path-following control for an industrial robot. IEEE Trans Control Syst Technol, 2017, 25(4): 1505 doi: 10.1109/TCST.2016.2601624 [20] Wang Y, Zhu X P, Zhou Z, et al. UAV path following in 3-D dynamic environment. Robot, 2014, 36(1): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201401012.htm王懌, 祝小平, 周洲, 等. 3維動態環境下的無人機路徑跟蹤算法. 機器人, 2014, 36(1): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201401012.htm [21] Ma C J, Li F, Liao C, et al. Path following based on model predictive control for automatic parking system[J/OL]. SAE Technical Paper(2017-09-23)[2018-11-13]. https://www.sae.org/publications/technical-papers/content/2017-01-1952/ [22] Bai G X, Meng Y, Gu Q, et al. Path tracking of car-like vehicles based on variable weight model predictive control//2018 Chinese Automation Congress. Xi'an, 2018: 1943 http://www.researchgate.net/publication/331418842_Path_Tracking_of_Car-Like_Vehicles_Based_on_Variable_Weight_Model_Predictive_Control/download -