<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

一步納米銀催化刻蝕法制備多孔硅納米線陣列

何祖東 耿超 邱佳佳 楊璽 席風碩 李紹元 馬文會

何祖東, 耿超, 邱佳佳, 楊璽, 席風碩, 李紹元, 馬文會. 一步納米銀催化刻蝕法制備多孔硅納米線陣列[J]. 工程科學學報, 2019, 41(7): 922-928. doi: 10.13374/j.issn2095-9389.2019.07.011
引用本文: 何祖東, 耿超, 邱佳佳, 楊璽, 席風碩, 李紹元, 馬文會. 一步納米銀催化刻蝕法制備多孔硅納米線陣列[J]. 工程科學學報, 2019, 41(7): 922-928. doi: 10.13374/j.issn2095-9389.2019.07.011
HE Zu-dong, GENG Chao, QIU Jia-jia, YANG Xi, XI Feng-shuo, LI Shao-yuan, MA Wen-hui. Porous silicon nanowire arrays fabrication through one-step metal-assisted chemical etching[J]. Chinese Journal of Engineering, 2019, 41(7): 922-928. doi: 10.13374/j.issn2095-9389.2019.07.011
Citation: HE Zu-dong, GENG Chao, QIU Jia-jia, YANG Xi, XI Feng-shuo, LI Shao-yuan, MA Wen-hui. Porous silicon nanowire arrays fabrication through one-step metal-assisted chemical etching[J]. Chinese Journal of Engineering, 2019, 41(7): 922-928. doi: 10.13374/j.issn2095-9389.2019.07.011

一步納米銀催化刻蝕法制備多孔硅納米線陣列

doi: 10.13374/j.issn2095-9389.2019.07.011
基金項目: 

國家自然科學基金資助項目 51504117

國家自然科學基金資助項目 61764009

國家自然科學基金資助項目 51762043

云南省重點基金資助項目 2018FA027

云南省青年基金資助項目 2016FD037

詳細信息
    通訊作者:

    李紹元, E-mail: lsy415808550@163.com

  • 中圖分類號: TM914.4

Porous silicon nanowire arrays fabrication through one-step metal-assisted chemical etching

More Information
  • 摘要: 通過采用一步納米金屬顆粒輔助化學刻蝕法(MACE)成功制備了多孔硅納米線, 并主要研究了硅片摻雜濃度、氧化劑AgNO3濃度以及HF濃度對硅納米線陣列形貌結構的影響規律. 研究結果表明: 較高的摻雜濃度更有利于刻蝕反應的發生和硅納米線陣列的形成, 這是由于高摻雜濃度在硅片表面引入了更多的雜質和缺陷, 同時高摻雜濃度的硅片與溶液界面形成的肖特基勢壘更低, 更容易氧化溶解形成硅納米線陣列; 在一步金屬輔助化學刻蝕法制備多孔硅納米線陣列的過程中, 溶液中AgNO3濃度對于其刻蝕形貌和結構起到主要作用, AgNO3濃度過低或過高時, 硅片表面會形成腐蝕凹坑或坍塌的納米線簇, AgNO3濃度為0.02 mol·L-1時, 硅納米線會生長變長, 最終形成多孔硅納米線陣列. 隨著硅納米線的增長, 納米線之間的毛細應力會使得一些納米線頂部出現團聚現象; 且當HF溶液濃度超過4.6 mol·L-1時, 隨著HF酸濃度的增加, 硅納米線的長度隨之增加. 同時, 硅納米線的頂部有多孔結構生成, 且硅納米線的孔隙率隨HF濃度的增加而增多, 這是由于納米線頂部大量的Ag+隨機形核, 導致硅納米線側向腐蝕的結果. 最后, 根據實驗現象提出相應模型對多孔硅納米線的形成過程進行了解釋, 歸因于銀離子的沉積和硅基底的氧化溶解.

     

  • 圖  1  不同電阻率硅納米線的截面掃描電鏡圖. (a)10~20 Ω·cm;(b)0.3~0.8 Ω·cm;(c~d)0.01~0.09 Ω·cm

    Figure  1.  Cross-sectional SEM images of SiNWs with different resistivitie: (a)10-20 Ω·cm; (b)0.3-0.8 Ω·cm; (c-d)0.01-0.09 Ω·cm

    圖  2  不同AgNO3濃度下獲得的硅納米線的掃描電鏡圖. (a~b)0.003 mol·L-1;(c~d)0.02 mol·L-1;(e~f)0.4 mol·L-1

    Figure  2.  SEM images of SiNWs prepared under different AgNO3 concentrations: (a-b)0.003 mol·L-1; (c-d)0.02 mol·L-1; (e-f)0.4 mol·L-1

    圖  3  不同HF濃度下獲得的硅納米線的截面掃描電鏡圖. (a~b)4.6 mol·L-1;(c~d)9.2 mol·L-1

    Figure  3.  Cross-sectional SEM images of SiNWs prepared under different HF concentrations: (a-b) 4.6 mol·L-1; (c-d) 9.2 mol·L-1

    圖  4  單根多孔硅納米線透射電鏡圖和納米銀顆粒高分辨透射電子顯微鏡圖(腐蝕時間:60 min;AgNO3濃度:0.02 mol·L-1;HF酸濃度:9.2 mol·L-1)

    Figure  4.  TEM and HRTEM images of single SiNW and silver nano-particles(etching time: 60 min; AgNO3 concentration: 0.02 mol·L-1; HF concentration: 9.2 mol·L-1)

    圖  5  采用HF/AgNO3體系一步金屬輔助化學刻蝕制備多孔硅納米線的形成機理

    Figure  5.  Formation mechanism of porous SiNWs through one-step metal-assisted chemical etching in HF/AgNO3 solution

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Priolo F, Gregorkiewicz T, Galli M, et al. Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol, 2014, 9(1): 19 doi: 10.1038/nnano.2013.271
    [2] Wu D, Lou Z H, Wang Y G, et al. Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction. Sol Energy Mater Sol Cells, 2018, 182: 272 doi: 10.1016/j.solmat.2018.03.017
    [3] Liu L, Cao Y, He J H, et al. Preparation and optoelectronic application of silicon nanowire arrays. Prog Chem, 2013, 25(2-3): 248 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2013Z1009.htm

    劉莉, 曹陽, 賀軍輝, 等. 硅納米線陣列的制備及其光電應用. 化學進展, 2013, 25(2-3): 248 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ2013Z1009.htm
    [4] Shang Y D, Chen X H, Li S Y, et al. Performance limiting factors and efficiency improvement methods of graphene/n-Si Schottky junction solar cell. Mater Rev, 2017, 31(2): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201703020.htm

    尚鈺東, 陳秀華, 李紹元, 等. 石墨烯/n-Si肖特基結太陽能電池的性能限制因素及效率提升方法. 材料導報, 2017, 31(2): 123 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201703020.htm
    [5] Ding Z, Ma W H, Wei K X, et al. Latest progress in purification of metallurgical grade silicon by slag oxidation refining. Chin J Vac Sci Technol, 2013, 33(2): 185 doi: 10.3969/j.issn.1672-7126.2013.02.18

    丁朝, 馬文會, 魏奎先, 等. 造渣氧化精煉提純冶金級硅研究進展. 真空科學與技術學報, 2013, 33(2): 185 doi: 10.3969/j.issn.1672-7126.2013.02.18
    [6] Liao M J, Qiao L, Xiao P, et al. Preparation of silicon nanowires array by chemistry methods and photoelectrochemical hydrogen generation performance analysis. Chin J Inorg Chem, 2015, 31(3): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201503002.htm

    廖明佳, 喬雷, 肖鵬, 等. 濕化學法制備硅納米線陣列及其光電化學產氫性能分析. 無機化學學報, 2015, 31(3): 439 https://www.cnki.com.cn/Article/CJFDTOTAL-WJHX201503002.htm
    [7] Ni Z F, Liu L G, Wang Y G. Synthesis and characterization of silica nanowires catalysted by tin. Chin J Mater Res, 2011, 25(2): 183 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201102015.htm

    倪自豐, 劉利國, 王永光. 錫催化生長氧化硅納米線的制備和表征. 材料研究學報, 2011, 25(2): 183 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201102015.htm
    [8] Ahmed N, Bhargav P B, Rayerfrancis A, et al. Study the effect of plasma power density and gold catalyst thickness on silicon nanowires growth by plasma enhanced chemical vapour deposition. Mater Lett, 2018, 219: 127 doi: 10.1016/j.matlet.2018.02.086
    [9] Liu L, Li Z S, Hu H D, et al. Insight into macroscopic metal-assisted chemical etching for silicon nanowires. Acta Phys-Chim Sin, 2016, 32(4): 1019 doi: 10.3866/PKU.WHXB201602183
    [10] He X, Li S Y, Ma W H, et al. A simple and low-cost chemical etching method for controllable fabrication of large-scale kinked silicon nanowires. Mater Lett, 2017, 196: 269 doi: 10.1016/j.matlet.2017.03.131
    [11] Li X, Bohn P W. Metal-assisted chemical etching in F/H2O2 produces porous silicon. Appl Phys Lett, 2000, 77(16): 2572 doi: 10.1063/1.1319191
    [12] He X, Zou Y X, Sheng G Z, et al. Research on controllable preparation and antireflection properties of zigzag SiNWs arrays. Integr Ferroelectr, 2017, 182(1): 65 doi: 10.1080/10584587.2017.1352388
    [13] Zhang C, Li S Y, Ma W H, et al. Fabrication of ultra-low antireflection SiNWs arrays from mc-Si using one step MACE. J Mater Sci Mater Electron, 2017, 28(12): 8510 doi: 10.1007/s10854-017-6573-7
    [14] Li S Y, Ma W H, Chen X H, et al. Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. Appl Surf Sci, 2016, 369: 232 doi: 10.1016/j.apsusc.2016.02.028
    [15] Yeom J, Ratchford D, Field C R, et al. Decoupling diameter and pitch in silicon nanowire arrays made by metal-assisted chemical etching. Adv Funct Mater, 2014, 24(1): 106 doi: 10.1002/adfm.201301094
    [16] Ding Z, Wei K X, Ma W H, et al. Boron removal from metallurgical-grade silicon using CaO-SiO2 slag. J Iron Steel Res Int, 2012, 358(Suppl 2): 2708 https://www.researchgate.net/publication/277405329_Boron_Removal_From_Metallurgical-Grade_Silicon_Using_CaO-SiO2_Slag
    [17] Cullis A G, Canham L T, Calcott P D J. The structural and luminescence properties of porous silicon. J Appl Phys, 1997, 82(3): 909 doi: 10.1063/1.366536
    [18] Li S Y, Ma W H, Zhou Y, et al. Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res Lett, 2014, 9: 196 doi: 10.1186/1556-276X-9-196
    [19] Smith Z R, Smith R L, Collins S D. Mechanism of nanowire formation in metal assisted chemical etching. Electrochim Acta, 2013, 92: 139 doi: 10.1016/j.electacta.2012.12.075
    [20] Angelescu D G, Vasilescu M, Anastasescu M, et al. Synthesis and association of Ag(0) nanoparticles in aqueous Pluronic F127 triblock copolymer solutions. Colloids Surf A, 2012, 394: 57 doi: 10.1016/j.colsurfa.2011.11.025
  • 加載中
圖(5)
計量
  • 文章訪問數:  1131
  • HTML全文瀏覽量:  455
  • PDF下載量:  40
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-06-24
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回