Minimum energy path of a solute atom diffusing to an edge dislocation core in Al-Mg alloys based on empirical atomic potential
-
摘要: 鋁鎂合金在制造業中應用廣泛, 但其在特定應變率下的塑性失穩不利于加工應用. 溶質原子與位錯的交互作用是塑性失穩的微觀機理. 本文采用勢能曲面過渡態搜索技術計算了鋁鎂合金中替代型溶質鎂原子向位錯芯遷移的過渡態, 確認了溶質原子與位錯芯的交互作用范圍, 并采用過渡態理論估算了遷移擴散所需的時間, 且區分了無空位及有空位參與遷移兩種情況. 結果表明, 位錯壓應力區內的溶質原子遷移無明顯規律, 而在位錯拉應力區內, 隨著溶質原子與位錯間距的縮短, 遷移勢能壘和系統總能量均逐漸降低. 說明目前廣泛采用的經驗原子勢可以很好地反映溶質原子易朝位錯拉應力區偏聚這一現象. 溶質原子遷移的過渡態證實遷移過程中的微觀結構變化因溶質原子所處位置不同而各異, 而交互作用范圍不超過約2 nm. 空位參與對遷移的輔助作用被量化為遷移熱激活時間的縮短, 并得出其可在微秒量級. 當溶質原子完成遷移穩定至位錯芯附近, 并不傾向于沿位錯線密集分布.Abstract: Al-Mg alloys are widely used in manufacturing. But at specific temperatures and strain rates, their plastic instability is not conducive to processing applications. The microscopic mechanism of plastic instability is the interaction between solute atoms and dislocations which induce a pinning-unpinnning effect. This effect, reflected on the microscopic scale, is also called dynamic strain aging (DSA). The DSA phenomenon causes negative strain-rate sensitivity and leads to plastic instability, which is harmful to its production. In this paper, the climbing image nudged elastic band method was adopted to explore the transition states along the minimum potential energy path, revealing a detailed evolution of atomic structures. The interaction range relies on the relative position and energy barrier of the transition, when a substitutional solute diffuses to an edge dislocation core in its stress field. Both substitution and vacancy-assisted migration are considered. The thermal activation time required for diffusion was estimated using transition state theory. The results indicate that there is no obvious law of solute atom migration in the compressive stress field. However, with the distance of the solute atom and the dislocation shortening, the migration potential energy barrier and the total energy of the system were gradually reduced. The present widespread empirical atomic potential can well estimate the phenomenon that the solute atom is prone to gathering in the tensile stress field. The transition states of migration confirmed the microstructure changes, depending on the position of the solute atom. The interaction region was no more than 2 nm. The migration energy was significantly reduced by vacancy mechanism, and the corresponding thermal activation time was shortened to microseconds. When the solute atoms finally migrated and stabilized near the dislocation core, there existed a maximum linear density. That is to say a dense arrangement along the dislocation line was not energetically preferred.
-
Key words:
- aluminum magnesium alloy /
- solute atom /
- dislocation /
- diffusing /
- migration energy
-
表 1 空位機制對遷移勢能壘(EBF)的削減及相應的熱激活時間
Table 1. Reduction in migration energy by a vacancy mechanism and the evaluated thermal activation time required for migration
角度/(°) 間距原子個數 置換機制能壘/eV 空位機制 能壘/eV 時間,t/s -45 1 1.77 0.39 3.59×10-6 2 2.81 0.59 8.25×10-3 3 3.5 0.42 1.15×10-5 4 3.64 0.45 3.66×10-5 5 3.92 -90 1 2.13 0.38 2.44×10-6 2 2.45 0.45 3.66×10-5 3 3.58 0.46 5.39×10-5 4 3.65 0.47 7.93×10-5 5 3.72 0.48 1.17×10-4 6 4.04 0.49 1.72×10-4 7 4.07 www.77susu.com -
參考文獻
[1] Portevin A, Le Chatelier F. Sur un phénomène observé lors de l'essai de traction d'alliages en cours de transformation. Comptes Rendus de l'Académie des Sciences Paris, 1923, 176: 507 [2] Araki H, Saji S, Okabe T, et al. Solidation of mechanically alloyed Al-10.7%Ti powder at low temperature and high pressure of 2 GPa. Mater Trans JIM, 1995, 36(3): 465 doi: 10.2320/matertrans1989.36.465 [3] Peng K P, Chen W Z, Qian K W. Study of an anomalous serrated yielding phenomenon in 3004 aluminum alloy. Acta Phys Sin, 2006, 55(7): 3569 doi: 10.3321/j.issn:1000-3290.2006.07.061彭開萍, 陳文哲, 錢匡武. 3004鋁合金"反常"鋸齒屈服現象的研究. 物理學報, 2006, 55(7): 3569 doi: 10.3321/j.issn:1000-3290.2006.07.061 [4] Van den Beukel A. Theory of the effect of dynamic strain aging on mechanical properties. Phys Status Solidi A, 1975, 30(1): 197 doi: 10.1002/pssa.2210300120 [5] Sun L, Zhang Q C, Cao P T. Influence of solute cloud and precipitates on spatiotemporal characteristics of Portevin-Le Chatelier effect in A2024 aluminum alloys. Chin Phys B, 2009, 18(8): 3500 doi: 10.1088/1674-1056/18/8/061 [6] Cao P T, Zhang Q C, Xiao R, et al. The Portevin-Le Chatelier effect in Al-Mg alloy investigated by infrared pyrometry. Acta Phys Sin, 2009, 58(8): 5591 doi: 10.3321/j.issn:1000-3290.2009.08.071曹鵬濤, 張青川, 肖銳, 等. 紅外測溫法研究Al-Mg合金中的Portevin-Le Chatelier效應. 物理學報, 2009, 58(8): 5591 doi: 10.3321/j.issn:1000-3290.2009.08.071 [7] Gao Y, Fu S H, Cai Y L, et al. Digital shearography investigation on the out-plane deformation of the Portevin-Le Chatelier bands. Acta Phys Sin, 2014, 63(6): 066201-1 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201406028.htm高越, 符師樺, 蔡玉龍, 等. 數字剪切散斑干涉法研究鋁合金中Portevin-Le Chatelier帶的離面變形行為. 物理學報, 2014, 63(6): 066201-1 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201406028.htm [8] Wang Z G, Huang Y S, Ge T S. Interaction of solute atoms with dislocations in aluminum-magnesium alloys under fatigue loading. Acta Phys Sin, 1965, 21(6): 1253 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB196506014.htm王中光, 黃元士, 葛庭燧. 在鋁鎂合金的疲勞載荷過程中溶質原子與位錯的交互作用. 物理學報, 1965, 21(6): 1253 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB196506014.htm [9] Aboulfadl H, Deges J, Choi P, et al. Dynamic strain aging studied at the atomic scale. Acta Mater, 2015, 86: 34 doi: 10.1016/j.actamat.2014.12.028 [10] Lin J P. Effect of Mg content on dynamic recrystallization behaviours of Al-Mg alloys. J Univ Sci Technol Beijing, 1997, 19(1): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199701008.htm林均品. Mg含量對Al-Mg合金動態再結晶的影響. 北京科技大學學報, 1997, 19(1): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199701008.htm [11] Keralavarma S M, Bower A F, Curtin W A. Quantum-to-continuum prediction of ductility loss in aluminium-magnesium alloys due to dynamic strain aging. Nature Commun, 2014, 5: 4604 doi: 10.1038/ncomms5604 [12] Du H L, Chen Z J. Molecular dynamics investigation on the distribution morphology of solute atoms in Al-Mg alloy. J Hefei Univ Technol Nat Sci, 2011, 34(3): 346 doi: 10.3969/j.issn.1003-5060.2011.03.006杜海龍, 陳忠家. 鋁鎂合金中溶質分布形態的分子動力學研究. 合肥工業大學學報(自然科學版), 2011, 34(3): 346 doi: 10.3969/j.issn.1003-5060.2011.03.006 [13] Curtin W A, Olmsted D L, Hector Jr L G. A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys. Nature Mater, 2006, 5(11): 875 doi: 10.1038/nmat1765 [14] Lebyodkin M, Dunin-Barkowskii L, Brechet Y, et al. Spatio-temporal dynamics of the Portevin-Le Chatelier effect: experiment and modelling. Acta Mater, 2000, 48(10): 2529 doi: 10.1016/S1359-6454(00)00067-7 [15] He Y S, Fu S H, Zhang Q C. Simulations of the interactions between dislocations and solute atoms in different loading conditions. Acta Phys Sin, 2014, 63(22): 228102-1 doi: 10.7498/aps.63.228102何艷生, 符師樺, 張青川. 不同加載條件下位錯和溶質原子交互作用的數值模擬. 物理學報, 2014, 63(22): 228102-1 doi: 10.7498/aps.63.228102 [16] Fan Y, Osetskiy Y N, Yip S, et al. Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations. Proc Natl Acad Sci USA, 2013, 110(44): 17756 doi: 10.1073/pnas.1310036110 [17] Tang X Z, Guo Y F, Sun L X, et al. Strain rate effect on dislocation climb mechanism via self-interstitials. Mater Sci Eng A, 2018, 713: 141 doi: 10.1016/j.msea.2017.12.002 [18] Yan X, Sharma P. Time-scaling in atomistics and the rate-dependent mechanical behavior of nanostructures. Nano Lett, 2016, 16(6): 3487 doi: 10.1021/acs.nanolett.6b00117 [19] Jiang H F, Zhang Q C, Chen X D, et al. Numerical simulation of the dynamic interactions between dislocation and solute atoms. Acta Phys Sin, 2007, 56(6): 3388 doi: 10.3321/j.issn:1000-3290.2007.06.057江慧豐, 張青川, 陳學東, 等. 位錯與溶質原子間動態相互作用的數值模擬研究. 物理學報, 2007, 56(6): 3388 doi: 10.3321/j.issn:1000-3290.2007.06.057 [20] Liu X Y, Ohotnicky P P, Adams J B, et al. Anisotropic surface segregation in Al-Mg alloys. Surf Sci, 1997, 373(2-3): 357 doi: 10.1016/S0039-6028(96)01154-5 -