<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

經驗原子勢下鋁鎂合金中溶質原子向位錯芯遷移的最低能量路徑

李曉彤 湯笑之 郭雅芳

李曉彤, 湯笑之, 郭雅芳. 經驗原子勢下鋁鎂合金中溶質原子向位錯芯遷移的最低能量路徑[J]. 工程科學學報, 2019, 41(7): 898-905. doi: 10.13374/j.issn2095-9389.2019.07.008
引用本文: 李曉彤, 湯笑之, 郭雅芳. 經驗原子勢下鋁鎂合金中溶質原子向位錯芯遷移的最低能量路徑[J]. 工程科學學報, 2019, 41(7): 898-905. doi: 10.13374/j.issn2095-9389.2019.07.008
LI Xiao-tong, TANG Xiao-zhi, GUO Ya-fang. Minimum energy path of a solute atom diffusing to an edge dislocation core in Al-Mg alloys based on empirical atomic potential[J]. Chinese Journal of Engineering, 2019, 41(7): 898-905. doi: 10.13374/j.issn2095-9389.2019.07.008
Citation: LI Xiao-tong, TANG Xiao-zhi, GUO Ya-fang. Minimum energy path of a solute atom diffusing to an edge dislocation core in Al-Mg alloys based on empirical atomic potential[J]. Chinese Journal of Engineering, 2019, 41(7): 898-905. doi: 10.13374/j.issn2095-9389.2019.07.008

經驗原子勢下鋁鎂合金中溶質原子向位錯芯遷移的最低能量路徑

doi: 10.13374/j.issn2095-9389.2019.07.008
基金項目: 

中央高校基本科研業務費專項資金資助項目 2018RC019

國家自然科學基金資助項目 11602015

國家自然科學基金資助項目 11772043

北京交通大學大學生科研訓練資助項目 170130018

詳細信息
    通訊作者:

    郭雅芳, E-mail: yfguo@bjtu.edu.cn

  • 中圖分類號: TG111.6

Minimum energy path of a solute atom diffusing to an edge dislocation core in Al-Mg alloys based on empirical atomic potential

More Information
  • 摘要: 鋁鎂合金在制造業中應用廣泛, 但其在特定應變率下的塑性失穩不利于加工應用. 溶質原子與位錯的交互作用是塑性失穩的微觀機理. 本文采用勢能曲面過渡態搜索技術計算了鋁鎂合金中替代型溶質鎂原子向位錯芯遷移的過渡態, 確認了溶質原子與位錯芯的交互作用范圍, 并采用過渡態理論估算了遷移擴散所需的時間, 且區分了無空位及有空位參與遷移兩種情況. 結果表明, 位錯壓應力區內的溶質原子遷移無明顯規律, 而在位錯拉應力區內, 隨著溶質原子與位錯間距的縮短, 遷移勢能壘和系統總能量均逐漸降低. 說明目前廣泛采用的經驗原子勢可以很好地反映溶質原子易朝位錯拉應力區偏聚這一現象. 溶質原子遷移的過渡態證實遷移過程中的微觀結構變化因溶質原子所處位置不同而各異, 而交互作用范圍不超過約2 nm. 空位參與對遷移的輔助作用被量化為遷移熱激活時間的縮短, 并得出其可在微秒量級. 當溶質原子完成遷移穩定至位錯芯附近, 并不傾向于沿位錯線密集分布.

     

  • 圖  1  溶質鎂原子遷移之前的模型局部圖

    Figure  1.  Relative position of the Mg solute and the edge dislocation before migration

    圖  2  溶質鎂原子在滑移面上向位錯擴散時發生置換反應的最低能量路徑

    Figure  2.  MEP of a Mg solute migration to dislocation on the glide plane without a vacancy mechanism

    圖  3  溶質鎂原子在滑移面內的置換遷移過渡態(R13為亞穩過渡態,R21為鞍點過渡態)

    Figure  3.  Transition states of a Mg solute migration to dislocation on the glide plane without a vacancy mechanism (R13 is a metastable state, and R21 is the saddle point state)

    圖  4  溶質鎂原子位于位錯拉壓應力區的置換遷移最低能量路徑及過渡態.(a)拉應力區(θ=-90°);(b)壓應力區(θ=+90°)

    Figure  4.  MEP and transition states of a Mg solute migration to dislocation above and below the dislocation line without a vacancy mechanism: (a) tension stress field (θ=-90°); (b) compression stress field (θ=+90°)

    圖  5  位錯周圍應力場對溶質鎂原子擴散行為的影響

    Figure  5.  Different migration energy and potential energy changes after migration in the stress fields of an edge dislocation core

    圖  6  溶質鎂原子位于位錯拉壓應力區時借助空位向位錯芯擴散的遷移最低能量路徑及過渡態. (a)拉應力區(θ=-90°);(b)壓應力區(θ=+90°)

    Figure  6.  MEP and transition states of a Mg solute migration to dislocation below and above dislocation line with a vacancy mechanism: (a) tension stress field (θ=-90°); (b) compression stress field (θ=+90°)

    圖  7  本征空位存在時位錯拉應力場對溶質鎂原子擴散行為的影響

    Figure  7.  Different migration energy and potential energy change after the migration in the stress fields of an edge dislocation core with a vacancy mechanism

    圖  8  位錯正下方沿位錯線方向分布的兩個鎂原子之間距離對體系能量變化的影響

    Figure  8.  Potential energy change induced by the distance variation between two Mg solutes along the dislocation line in the tensile stress field

    表  1  空位機制對遷移勢能壘(EBF)的削減及相應的熱激活時間

    Table  1.   Reduction in migration energy by a vacancy mechanism and the evaluated thermal activation time required for migration

    角度/(°) 間距原子個數 置換機制能壘/eV 空位機制
    能壘/eV 時間,t/s
    -45 1 1.77 0.39 3.59×10-6
    2 2.81 0.59 8.25×10-3
    3 3.5 0.42 1.15×10-5
    4 3.64 0.45 3.66×10-5
    5 3.92
    -90 1 2.13 0.38 2.44×10-6
    2 2.45 0.45 3.66×10-5
    3 3.58 0.46 5.39×10-5
    4 3.65 0.47 7.93×10-5
    5 3.72 0.48 1.17×10-4
    6 4.04 0.49 1.72×10-4
    7 4.07
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Portevin A, Le Chatelier F. Sur un phénomène observé lors de l'essai de traction d'alliages en cours de transformation. Comptes Rendus de l'Académie des Sciences Paris, 1923, 176: 507
    [2] Araki H, Saji S, Okabe T, et al. Solidation of mechanically alloyed Al-10.7%Ti powder at low temperature and high pressure of 2 GPa. Mater Trans JIM, 1995, 36(3): 465 doi: 10.2320/matertrans1989.36.465
    [3] Peng K P, Chen W Z, Qian K W. Study of an anomalous serrated yielding phenomenon in 3004 aluminum alloy. Acta Phys Sin, 2006, 55(7): 3569 doi: 10.3321/j.issn:1000-3290.2006.07.061

    彭開萍, 陳文哲, 錢匡武. 3004鋁合金"反常"鋸齒屈服現象的研究. 物理學報, 2006, 55(7): 3569 doi: 10.3321/j.issn:1000-3290.2006.07.061
    [4] Van den Beukel A. Theory of the effect of dynamic strain aging on mechanical properties. Phys Status Solidi A, 1975, 30(1): 197 doi: 10.1002/pssa.2210300120
    [5] Sun L, Zhang Q C, Cao P T. Influence of solute cloud and precipitates on spatiotemporal characteristics of Portevin-Le Chatelier effect in A2024 aluminum alloys. Chin Phys B, 2009, 18(8): 3500 doi: 10.1088/1674-1056/18/8/061
    [6] Cao P T, Zhang Q C, Xiao R, et al. The Portevin-Le Chatelier effect in Al-Mg alloy investigated by infrared pyrometry. Acta Phys Sin, 2009, 58(8): 5591 doi: 10.3321/j.issn:1000-3290.2009.08.071

    曹鵬濤, 張青川, 肖銳, 等. 紅外測溫法研究Al-Mg合金中的Portevin-Le Chatelier效應. 物理學報, 2009, 58(8): 5591 doi: 10.3321/j.issn:1000-3290.2009.08.071
    [7] Gao Y, Fu S H, Cai Y L, et al. Digital shearography investigation on the out-plane deformation of the Portevin-Le Chatelier bands. Acta Phys Sin, 2014, 63(6): 066201-1 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201406028.htm

    高越, 符師樺, 蔡玉龍, 等. 數字剪切散斑干涉法研究鋁合金中Portevin-Le Chatelier帶的離面變形行為. 物理學報, 2014, 63(6): 066201-1 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201406028.htm
    [8] Wang Z G, Huang Y S, Ge T S. Interaction of solute atoms with dislocations in aluminum-magnesium alloys under fatigue loading. Acta Phys Sin, 1965, 21(6): 1253 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB196506014.htm

    王中光, 黃元士, 葛庭燧. 在鋁鎂合金的疲勞載荷過程中溶質原子與位錯的交互作用. 物理學報, 1965, 21(6): 1253 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB196506014.htm
    [9] Aboulfadl H, Deges J, Choi P, et al. Dynamic strain aging studied at the atomic scale. Acta Mater, 2015, 86: 34 doi: 10.1016/j.actamat.2014.12.028
    [10] Lin J P. Effect of Mg content on dynamic recrystallization behaviours of Al-Mg alloys. J Univ Sci Technol Beijing, 1997, 19(1): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199701008.htm

    林均品. Mg含量對Al-Mg合金動態再結晶的影響. 北京科技大學學報, 1997, 19(1): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD199701008.htm
    [11] Keralavarma S M, Bower A F, Curtin W A. Quantum-to-continuum prediction of ductility loss in aluminium-magnesium alloys due to dynamic strain aging. Nature Commun, 2014, 5: 4604 doi: 10.1038/ncomms5604
    [12] Du H L, Chen Z J. Molecular dynamics investigation on the distribution morphology of solute atoms in Al-Mg alloy. J Hefei Univ Technol Nat Sci, 2011, 34(3): 346 doi: 10.3969/j.issn.1003-5060.2011.03.006

    杜海龍, 陳忠家. 鋁鎂合金中溶質分布形態的分子動力學研究. 合肥工業大學學報(自然科學版), 2011, 34(3): 346 doi: 10.3969/j.issn.1003-5060.2011.03.006
    [13] Curtin W A, Olmsted D L, Hector Jr L G. A predictive mechanism for dynamic strain ageing in aluminium-magnesium alloys. Nature Mater, 2006, 5(11): 875 doi: 10.1038/nmat1765
    [14] Lebyodkin M, Dunin-Barkowskii L, Brechet Y, et al. Spatio-temporal dynamics of the Portevin-Le Chatelier effect: experiment and modelling. Acta Mater, 2000, 48(10): 2529 doi: 10.1016/S1359-6454(00)00067-7
    [15] He Y S, Fu S H, Zhang Q C. Simulations of the interactions between dislocations and solute atoms in different loading conditions. Acta Phys Sin, 2014, 63(22): 228102-1 doi: 10.7498/aps.63.228102

    何艷生, 符師樺, 張青川. 不同加載條件下位錯和溶質原子交互作用的數值模擬. 物理學報, 2014, 63(22): 228102-1 doi: 10.7498/aps.63.228102
    [16] Fan Y, Osetskiy Y N, Yip S, et al. Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations. Proc Natl Acad Sci USA, 2013, 110(44): 17756 doi: 10.1073/pnas.1310036110
    [17] Tang X Z, Guo Y F, Sun L X, et al. Strain rate effect on dislocation climb mechanism via self-interstitials. Mater Sci Eng A, 2018, 713: 141 doi: 10.1016/j.msea.2017.12.002
    [18] Yan X, Sharma P. Time-scaling in atomistics and the rate-dependent mechanical behavior of nanostructures. Nano Lett, 2016, 16(6): 3487 doi: 10.1021/acs.nanolett.6b00117
    [19] Jiang H F, Zhang Q C, Chen X D, et al. Numerical simulation of the dynamic interactions between dislocation and solute atoms. Acta Phys Sin, 2007, 56(6): 3388 doi: 10.3321/j.issn:1000-3290.2007.06.057

    江慧豐, 張青川, 陳學東, 等. 位錯與溶質原子間動態相互作用的數值模擬研究. 物理學報, 2007, 56(6): 3388 doi: 10.3321/j.issn:1000-3290.2007.06.057
    [20] Liu X Y, Ohotnicky P P, Adams J B, et al. Anisotropic surface segregation in Al-Mg alloys. Surf Sci, 1997, 373(2-3): 357 doi: 10.1016/S0039-6028(96)01154-5
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數:  907
  • HTML全文瀏覽量:  367
  • PDF下載量:  15
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-06-20
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回