<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Nb在高鋁鐵素體鋼中的固溶析出行為

劉鵬程 徐翔宇 劉倩男 李建赭 劉丹 延澤鵬 孫明煜 王學敏

劉鵬程, 徐翔宇, 劉倩男, 李建赭, 劉丹, 延澤鵬, 孫明煜, 王學敏. Nb在高鋁鐵素體鋼中的固溶析出行為[J]. 工程科學學報, 2019, 41(7): 882-888. doi: 10.13374/j.issn2095-9389.2019.07.006
引用本文: 劉鵬程, 徐翔宇, 劉倩男, 李建赭, 劉丹, 延澤鵬, 孫明煜, 王學敏. Nb在高鋁鐵素體鋼中的固溶析出行為[J]. 工程科學學報, 2019, 41(7): 882-888. doi: 10.13374/j.issn2095-9389.2019.07.006
LIU Peng-cheng, XU Xiang-yu, LIU Qian-nan, LI Jian-zhe, LIU Dan, YAN Ze-peng, SUN Ming-yu, WANG Xue-min. Solid solution and precipitation behavior of Nb in Al-bearing ferritic steels[J]. Chinese Journal of Engineering, 2019, 41(7): 882-888. doi: 10.13374/j.issn2095-9389.2019.07.006
Citation: LIU Peng-cheng, XU Xiang-yu, LIU Qian-nan, LI Jian-zhe, LIU Dan, YAN Ze-peng, SUN Ming-yu, WANG Xue-min. Solid solution and precipitation behavior of Nb in Al-bearing ferritic steels[J]. Chinese Journal of Engineering, 2019, 41(7): 882-888. doi: 10.13374/j.issn2095-9389.2019.07.006

Nb在高鋁鐵素體鋼中的固溶析出行為

doi: 10.13374/j.issn2095-9389.2019.07.006
詳細信息
    通訊作者:

    王學敏, E-mail: wxm@mater.ustb.edu.cn

  • 中圖分類號: TG142.1

Solid solution and precipitation behavior of Nb in Al-bearing ferritic steels

More Information
  • 摘要: 采用電解相分析方法, 結合X射線衍射分析和電感耦合等離子體原子發射光譜儀(ICP)、掃描電鏡(SEM)、透射電鏡(TEM)等對高鋁鐵素體基體中的析出相顆粒粉末和電解液進行定性定量分析. 試驗結果表明, 試驗鋼中固態析出相主要為NbC以及少量的Al2O3和AlN夾雜. 通過掃描電鏡觀察不同再加熱溫度下NbC分布狀態, 發現隨著固溶溫度的升高, 鑄態組織中存在的NbC析出逐漸回溶, 數量隨之減少且發生明顯的粗化行為. 當溫度升高到1100℃, 大部分NbC已經回溶到高溫鐵素體基體中. 在利用Thermo-Calc熱力學計算軟件分析Nb及其碳化物的熱力學性質基礎上, 計算得到Al與Nb的相互作用系數, 表明Al能夠降低Nb在鐵素體基體中的活度, 提高其在基體中的固溶度, 進一步得到了NbC在高鋁鐵素體鋼中的固溶度積公式, 發展了高溫鐵素體中的Nb微合金化理論, 為進一步的應用提供了理論基礎.

     

  • 圖  1  電解化學相分析中過濾剩余產物的X射線衍射測定結果

    Figure  1.  XRD patterns of particles in experimental steels as determined by physical and chemical phase analysis

    圖  2  Thermo-Calc軟件得到Fe-Al-Nb相圖

    Figure  2.  Fe-Al-Nb phase diagram calculated by Thermo-Calc

    圖  3  NbC在鐵素體基體中固溶量的比較

    Figure  3.  Comparison of solubility products of NbC in ferrite

    圖  4  試驗鋼透射電鏡和能譜分析

    Figure  4.  TEM images and corresponding EDS results of carbide precipitates in experimental steels

    圖  5  試驗鋼在不同溫度下的掃描電鏡照片. (a)600 ℃; (b)700 ℃; (c)800 ℃; (d)900 ℃; (e)1000 ℃; (f)1100 ℃

    Figure  5.  SEM images of carbide precipitates in experimental steels held at different temperatures: (a) 600 ℃; (b) 700 ℃; (c) 800 ℃; (d) 900 ℃; (e) 1000 ℃; (f) 1100 ℃

    圖  6  Thermo-Calc軟件得到Nb和C在鐵素體中的擴散系數

    Figure  6.  Diffusion coefficient of Nb and C in ferrite calculated by Thermo-Calc

    圖  7  試驗鋼不同溫度下的掃描電鏡照片. (a)700 ℃; (b)800 ℃; (c)900 ℃

    Figure  7.  SEM images of carbide precipitates in experimental steels held at different temperatures: (a) 700 ℃; (b) 800 ℃; (c) 900 ℃

    表  1  Nb在鐵素體中的固溶度

    Table  1.   Solubility of Nb in ferrite

    溫度/℃ wNb/%
    900 0.0012
    950 0.0130
    1000 0.0341
    1050 0.0452
    1100 0.0535
    下載: 導出CSV

    表  2  Al與Nb相互作用系數計算中使用的參數

    Table  2.   Parameters in present model for calculating interaction coefficients of Al and Nb

    元素 nws1/3 ? V2/3 p q/p
    Fe 1.77 5.10 3.69 12.3 9.4
    Nb 1.64 4.05 4.90 12.3 9.4
    Al 1.39 4.20 4.4 12.3 9.4
    其中,nws1/3為電子密度,?為電中性,V2/3為摩爾體積,pq/p均為常數.
    下載: 導出CSV

    表  3  與Laves相平衡的Nb在鐵素體中的固溶度

    Table  3.   Solubility of Nb equilibrium with Laves in ferrite

    T/℃ wNb/%
    500 0.067
    600 0.149
    700 0.322
    800 0.669
    900 1.137
    1000 1.747
    1100 2.513
    1200 3.452
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Pramanik S, Koppoju S, Anupama A V, et al. Strengthening mechanisms in Fe-Al based ferritic low-density steels. Mater Sci Eng A, 2018, 712: 574 doi: 10.1016/j.msea.2017.10.056
    [2] Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels. Prog Mater Sci, 2017, 89: 345 doi: 10.1016/j.pmatsci.2017.05.002
    [3] Xu X Y, Li J Z, Wang X M, et al. Softening and recrystallization behavior of a new class of ferritic steel. J. Iron Steel Res Int, 2019, 26(2): 154 doi: 10.1007/s42243-019-00230-0
    [4] Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: simplex and alloys strengthened by nanoscale ordered carbides. Mater Sci Technol, 2014, 30(9): 1099 doi: 10.1179/1743284714Y.0000000515
    [5] Lilly A C, Deevi S C, Gibbs Z P. Electrical properties of iron aluminides. Mater Sci Eng A, 1998, 258(1-2): 42 doi: 10.1016/S0921-5093(98)00915-0
    [6] Rana R, Liu C, Ray R K. Low-density low-carbon Fe-Al ferritic steels. Scripta Mater, 2013, 68(6): 354 doi: 10.1016/j.scriptamat.2012.10.004
    [7] Ghosh S, Mula S. Thermomechanical processing of low carbon Nb-Ti stabilized microalloyed steel: microstructure and mechanical properties. Mater Sci Eng A, 2015, 646: 218 doi: 10.1016/j.msea.2015.08.072
    [8] Hu H J, Xu G, Wang L, et al. The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels. Mater Des, 2015, 84: 95 doi: 10.1016/j.matdes.2015.06.133
    [9] Deardo A J. Niobium in modern steels. Int Mater Rev, 2003, 48(6): 371 doi: 10.1179/095066003225008833
    [10] Baker T N. Microalloyed steels. Ironmaking Steelmaking, 2016, 43(4): 264 doi: 10.1179/1743281215Y.0000000063
    [11] Cao Y B, Xiao F R, Qiao G Y, et al. Strain-induced precipitation and softening behaviors of high Nb microalloyed steels. Mater Sci Eng A, 2012, 552: 502 doi: 10.1016/j.msea.2012.05.078
    [12] Hutchinson C R, Zurob H S, Sinclair C W, et al. The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels. Scripta Mater, 2008, 59(6): 635 doi: 10.1016/j.scriptamat.2008.05.036
    [13] Wu H B, Ju B, Tang D, et al. Effect of Nb addition on the microstructure and mechanical properties of an 1800 MPa ultrahigh strength steel. Mater Sci Eng A, 2015, 622: 61 doi: 10.1016/j.msea.2014.11.005
    [14] Zhao H, Wynne B P, Palmiere E J. Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling. Mater Charact, 2017, 123: 128 doi: 10.1016/j.matchar.2016.11.025
    [15] Zheng L, Yong Q L, Sun Z B. Solubility of niobium carbide in a microalloy steel. Acta Metall Sin, 1987, 23(6): 547 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB198706017.htm

    鄭魯, 雍岐龍, 孫珍寶. 碳化鈮在微合金鋼中的溶解. 金屬學報, 1987, 23(6): 547 https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB198706017.htm
    [16] Wang F M, Li X P, Han Q Y, et al. A model for calculating interaction coefficients between elements in liquid and iron-base alloy. Metall Mater Trans B, 1997, 28(1): 109 doi: 10.1007/s11663-997-0133-0
    [17] Hao S M. Material Thermodynamics. Beijing: Chemical Industry Press, 2004

    郝士明. 材料熱力學. 北京: 化學工業出版社, 2004
    [18] Shi L. Alloy Thermodynamics. Beijing: Mechanical Industry Press, 1992

    石霖. 合金熱力學. 北京: 機械工業出版社, 1992
    [19] Yong Q L. Secondary Phases in Steel. Beijing: Metallurgical Industry Press, 2006

    雍岐龍. 鋼鐵材料中的第二相. 北京: 冶金工業出版社, 2006
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  1146
  • HTML全文瀏覽量:  519
  • PDF下載量:  41
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-01-12
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回