<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于全波形的煤樣單軸壓縮破壞聲電時頻特征

婁全 何學秋 宋大釗 李振雷 王安虎 孫冉

婁全, 何學秋, 宋大釗, 李振雷, 王安虎, 孫冉. 基于全波形的煤樣單軸壓縮破壞聲電時頻特征[J]. 工程科學學報, 2019, 41(7): 874-881. doi: 10.13374/j.issn2095-9389.2019.07.005
引用本文: 婁全, 何學秋, 宋大釗, 李振雷, 王安虎, 孫冉. 基于全波形的煤樣單軸壓縮破壞聲電時頻特征[J]. 工程科學學報, 2019, 41(7): 874-881. doi: 10.13374/j.issn2095-9389.2019.07.005
LOU Quan, HE Xue-qiu, SONG Da-zhao, LI Zhen-lei, WANG An-hu, SUN Ran. Time-frequency characteristics of acoustic-electric signals induced by coal fracture under uniaxial compression based on full-waveform[J]. Chinese Journal of Engineering, 2019, 41(7): 874-881. doi: 10.13374/j.issn2095-9389.2019.07.005
Citation: LOU Quan, HE Xue-qiu, SONG Da-zhao, LI Zhen-lei, WANG An-hu, SUN Ran. Time-frequency characteristics of acoustic-electric signals induced by coal fracture under uniaxial compression based on full-waveform[J]. Chinese Journal of Engineering, 2019, 41(7): 874-881. doi: 10.13374/j.issn2095-9389.2019.07.005

基于全波形的煤樣單軸壓縮破壞聲電時頻特征

doi: 10.13374/j.issn2095-9389.2019.07.005
基金項目: 

國家自然科學基金資助項目 51634001

國家自然科學基金資助項目 51774023

國家重點研發計劃資助項目 2016YFC0801408

詳細信息
    通訊作者:

    何學秋, E-mail: hexq@ustb.edu.cn

  • 中圖分類號: TD76

Time-frequency characteristics of acoustic-electric signals induced by coal fracture under uniaxial compression based on full-waveform

More Information
  • 摘要: 建立了煤巖受載破壞聲電全波形同步采集系統, 對煤樣單軸壓縮破壞過程中的聲電信號進行了全波形采集, 研究了聲電信號能量與載荷降之間的相關關系, 并分析了聲電信號的頻譜特征. 結果表明: (1)煤體受載破壞過程中產生顯著的聲電信號; 電磁輻射信號是陣發性的, 僅伴隨載荷降和較高強度聲發射信號出現; (2)相對于聲發射, 電磁輻射與載荷降有更好的相關性; 與煤體受載破壞的能量釋放累積量相關聯的聲電信號能量和載荷降累計值三者之間均呈高度正相關; (3)電磁輻射優勢頻帶窄于聲發射, 前者主要集中在1~25 kHz, 后者主要集中在1~280 kHz; 受同一裂紋萌生和擴展的影響, 兩者在頻譜和主頻分布上都有近似的低頻成分.

     

  • 圖  1  煤巖受載破壞聲電全波形同步采集系統示意圖

    Figure  1.  Schematic diagram of acoustic-electric full-waveform synchronous acquisition system of coal and rock fracture under loading

    圖  2  煤樣實物圖. (a)趙固二礦煤樣;(b)火鋪礦煤樣

    Figure  2.  Photographs of partial coal samples: (a) samples of Zhaogu No.2 coal mine; (b) samples of Huopu coal mine

    圖  3  聲發射傳感器和環形電磁天線布置實物圖

    Figure  3.  Arrangement photograph of acoustic emission sensor and loop antenna

    圖  4  聲發射幅度、電磁輻射幅度和載荷的時序曲線比較. (a)試樣zg1;(b)試樣hp1

    Figure  4.  Comparisons among time-series curves of acoustic emission amplitude, electromagnetic radiation amplitude and load: (a) sample zg1; (b) sample hp1

    圖  5  試樣zg1載荷降和聲電能量對比. (a)載荷降及其累計值;(b)電磁輻射能量及其累計值;(c)聲發射能量及其累計值

    Figure  5.  Comparisons among load drop, and energy of acoustic emission and electromagnetic radiation for sample zg1: (a) load drop and its cumulative value; (b) electromagnetic radiation energy and its cumulative value; (c) acoustic emission energy and its cumulative value

    圖  6  試樣hp1載荷降和聲電能量對比. (a)載荷降及其累計值;(b)電磁輻射能量及其累計值;(c)聲發射能量及其累計值

    Figure  6.  Comparisons among load drop, and energy of acoustic emission and electromagnetic radiation for sample hp1: (a) load drop and its cumulative value; (b) electromagnetic radiation energy and its cumulative value; (c) acoustic emission energy and its cumulative value

    圖  7  電磁輻射和聲發射頻譜圖. (a)試樣zg1;(b)試樣hp1

    Figure  7.  Spectra of acoustic emission and electromagnetic radiation: (a) sample zg1; (b) sample hp1

    圖  8  電磁輻射和聲發射平均頻譜. (a)試樣zg1;(b)試樣hp1

    Figure  8.  Average-spectra of acoustic emission and electromagnetic radiation: (a) sample zg1; (b) sample hp1

    圖  9  電磁輻射和聲發射主頻頻次統計. (a)趙固二礦煤樣;(b)火鋪礦煤樣

    Figure  9.  Main-frequency statistics for acoustic emission and electromagnetic radiation: (a) samples of Zhaogu No.2 coal mine; (b) samples of Huopu coal mine

    表  1  煤樣載荷降和聲電能量相關性統計

    Table  1.   Correlation coefficients among load drop, and energy of acoustic emission and electromagnetic radiation of coal samples

    試樣編號 相關性系數
    載荷降與電磁輻射能量 累計載荷降與累計電磁輻射能量 載荷降與聲發射能量 累計載荷降與累計聲發射能量 電磁輻射能量與聲發射能量 累計電磁輻射能量與累計聲發射能量
    zg1 0.788 0.977 0.720 0.988 0.860 0.954
    zg2 0.763 0.991 0.689 0.947 0.632 0.966
    zg3 0.876 0.998 0.765 0.955 0.782 0.952
    zg4 0.808 0.970 0.628 0.966 0.360 0.896
    zg5 0.835 0.966 0.577 0.975 0.516 0.965
    平均值 0.814 0.980 0.676 0.966 0.630 0.946
    hp1 0.980 0.985 0.583 0.894 0.478 0.902
    hp2 0.857 0.988 0.492 0.909 0.481 0.919
    hp3 0.699 0.973 0.520 0.905 0.436 0.875
    hp4 0.909 0.978 0.718 0.919 0.800 0.971
    hp5 0.745 0.989 0.403 0.978 0.583 0.970
    平均值 0.838 0.983 0.543 0.921 0.556 0.928
    總平均值 0.826 0.981 0.610 0.944 0.593 0.937
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yamada I, Masuda K, Mizutani H. Electromagnetic and acoustic emission associated with rock fracture. Phys Earth Planet Inter, 1989, 57(1-2): 157 doi: 10.1016/0031-9201(89)90225-2
    [2] Li Z H, Lou Q, Wang E Y, et al. Experimental study of acoustic-electric and thermal infrared characteristics of roof rock failure. J China Univ Min Technol, 2016, 45(6): 1098 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606003.htm

    李忠輝, 婁全, 王恩元, 等. 頂板巖石受壓破壞過程中聲電熱效應研究. 中國礦業大學學報, 2016, 45(6): 1098 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606003.htm
    [3] Mastrogiannis D, Antsygina T N, Chishko K A, et al. Relationship between electromagnetic and acoustic emissions in deformed piezoelectric media: microcracking signals. Int J Solids Struct, 2015, 56-57: 118 doi: 10.1016/j.ijsolstr.2014.11.027
    [4] Song D Z, Wang E Y, Song X Y, et al. Changes in frequency of electromagnetic radiation from loaded coal rock. Rock Mech Rock Eng, 2016, 49(1): 291 doi: 10.1007/s00603-015-0738-6
    [5] Carpinteri A, Lacidogna G, Pugno N. Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Eng Fract Mech, 2007, 74(1-2): 273 doi: 10.1016/j.engfracmech.2006.01.036
    [6] Wang E Y, He X Q, Li Z H, et al. Electromagnetic Radiation Technology of Coal and Rock and Its Application. 1st Ed. Beijing: Science Press, 2009

    王恩元, 何學秋, 李忠輝, 等. 煤巖電磁輻射技術及其應用. 1版. 北京: 科學出版社, 2009
    [7] Donner R V, Potirakis S M, Balasis G, et al. Temporal correlation patterns in pre-seismic electromagnetic emissions reveal distinct complexity profiles prior to major earthquakes. Phys Chem Earth Part A/B/C, 2015, 85-86: 44 doi: 10.1016/j.pce.2015.03.008
    [8] He X Q, Dou L M, Mu Z L, et al. Continuous monitoring and warning theory and technology of rock burst dynamic disaster of coal. J China Coal Soc, 2014, 39(8): 1485 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408016.htm

    何學秋, 竇林名, 牟宗龍, 等. 煤巖沖擊動力災害連續監測預警理論與技術. 煤炭學報, 2014, 39(8): 1485 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408016.htm
    [9] Liu J H, Zhao L, Song S M, et al. Ultrasonic velocity and acoustic emission properties of concrete eroded by sulfate and its damage mechanism. Chin J Eng, 2016, 38(8): 1075 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201608005.htm

    劉娟紅, 趙力, 宋少民, 等. 混凝土硫酸鹽腐蝕損傷的聲波與聲發射變化特征及機理. 工程科學學報, 2016, 38(8): 1075 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201608005.htm
    [10] Zhang J, Chai M Y, Xiang J H, et al. Fatigue damage evaluation of 316LN stainless steel using acoustic emission monitoring. Chin J Eng, 2017, 40(4): 461 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201804009.htm

    張進, 柴孟瑜, 項靖海, 等. 基于聲發射監測的316LN不銹鋼的疲勞損傷評價. 工程科學學報, 2017, 40(4): 461 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201804009.htm
    [11] Niccolini G, Xu J, Manuello A, et al. Onset time determination of acoustic and electromagnetic emission during rock fracture. Prog Electromagn Res Lett, 2012, 35: 51 doi: 10.2528/PIERL12070203
    [12] Wang E Y, He X Q, Liu X F, et al. A non-contact mine pressure evaluation method by electromagnetic radiation. J Appl Geophys, 2011, 75(2): 338 doi: 10.1016/j.jappgeo.2011.06.028
    [13] Wang E Y, He X Q, Liu X F, et al. Comprehensive monitoring technique based on electromagnetic radiation and its applications to mine pressure. Safety Sci, 2012, 50(4): 885 doi: 10.1016/j.ssci.2011.08.013
    [14] Frid V, Vozoff K. Electromagnetic radiation induced by mining rock failure. Int J Coal Geol, 2005, 64(1-2): 57 doi: 10.1016/j.coal.2005.03.005
    [15] Rabinovitch A, Frid V, Bahat D. Surface oscillations-a possible source of fracture induced electromagnetic radiation. Tectonophysics, 2007, 431(1-4): 15 doi: 10.1016/j.tecto.2006.05.027
    [16] Rabinovitch A, Frid V, Bahat D. Directionality of electromagnetic radiation from fractures. Int J Fract, 2017, 204(2): 239 doi: 10.1007/s10704-016-0178-7
    [17] Li X B, Wan G X, Zhou Z L. The relation between the frequency of electromagnetic radiation (EMR) induced by rock fracture and attribute parameters of rock masses. Chin J Geophys, 2009, 52(1): 253 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200901032.htm

    李夕兵, 萬國香, 周子龍. 巖石破裂電磁輻射頻率與巖石屬性參數的關系. 地球物理學報, 2009, 52(1): 253 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200901032.htm
    [18] Zhao Y X, Jiang Y D. Acoustic emission and thermal infrared precursors associated with bump-prone coal failure. Int J Coal Geol, 2010, 83(1): 11 doi: 10.1016/j.coal.2010.04.001
    [19] Zhao Y F, Pan Y S, Liu Y C, et al. Experimental study of charge induction of coal samples under uniaxial compression. Chin J Rock Mech Eng, 2011, 30(2): 306 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102013.htm

    趙揚鋒, 潘一山, 劉玉春, 等. 單軸壓縮條件下煤樣電荷感應試驗研究. 巖石力學與工程學報, 2011, 30(2): 306 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102013.htm
    [20] Potirakis S M, Karadimitrakis A, Eftaxias K. Natural time analysis of critical phenomena: the case of pre-fracture electromagnetic emissions. Chaos, 2013, 23(2): 023117-1 doi: 10.1063/1.4807908
    [21] Potirakis S M, Mastrogiannis D. Critical features revealed in acoustic and electromagnetic emissions during fracture experiments on LiF. Physica A, 2017, 485: 11 doi: 10.1016/j.physa.2017.05.025
    [22] Gade S O, Weiss U, Peter M A, et al. Relation of electromagnetic emission and crack dynamics in epoxy resin materials. J Nondestruct Eval, 2014, 33(4): 711 doi: 10.1007/s10921-014-0265-5
    [23] Gade S O, Alaca B B, Sause M G R. Determination of crack surface orientation in carbon fibre reinforced polymers by measuring electromagnetic emission. J Nondestruct Eval, 2017, 36: 21 doi: 10.1007/s10921-017-0403-y
    [24] Carpinteri A, Lacidogna G, Borla O, et al. Electromagnetic and neutron emissions from brittle rocks failure: experimental evidence and geological implications. Sādhanā, 2012, 37(1): 59
    [25] Zhu T, Zhou J G, Wang H Q. Electromagnetic emissions during dilating fracture of a rock. J Asian Earth Sci, 2013, 73: 252 doi: 10.1016/j.jseaes.2013.05.004
    [26] Ohnaka M, Mogi K. Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure. J Geophys Res, 1982, 87(B5): 3873 doi: 10.1029/JB087iB05p03873
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  1089
  • HTML全文瀏覽量:  545
  • PDF下載量:  18
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-05-28
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回