<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

外控電位法浮選分離黃銅礦和輝鉬礦

宋坤 宋永勝 張其東 李文娟 樂觀

宋坤, 宋永勝, 張其東, 李文娟, 樂觀. 外控電位法浮選分離黃銅礦和輝鉬礦[J]. 工程科學學報, 2019, 41(7): 857-863. doi: 10.13374/j.issn2095-9389.2019.07.003
引用本文: 宋坤, 宋永勝, 張其東, 李文娟, 樂觀. 外控電位法浮選分離黃銅礦和輝鉬礦[J]. 工程科學學報, 2019, 41(7): 857-863. doi: 10.13374/j.issn2095-9389.2019.07.003
SONG Kun, SONG Yong-sheng, ZHANG Qi-dong, LI Wen-juan, LE Guan. Flotation separation of chalcopyrite and molybdenite by externally controlled potential method[J]. Chinese Journal of Engineering, 2019, 41(7): 857-863. doi: 10.13374/j.issn2095-9389.2019.07.003
Citation: SONG Kun, SONG Yong-sheng, ZHANG Qi-dong, LI Wen-juan, LE Guan. Flotation separation of chalcopyrite and molybdenite by externally controlled potential method[J]. Chinese Journal of Engineering, 2019, 41(7): 857-863. doi: 10.13374/j.issn2095-9389.2019.07.003

外控電位法浮選分離黃銅礦和輝鉬礦

doi: 10.13374/j.issn2095-9389.2019.07.003
基金項目: 

國家自然科學基金資助項目 51704028

礦物加工科學與技術國家重點實驗室開放研究基金專項資助項目 BGRIMM-KJSKL-2017-18

詳細信息
    通訊作者:

    張其東, E-mail: zhangqidong01@126.com

  • 中圖分類號: TD923+.14

Flotation separation of chalcopyrite and molybdenite by externally controlled potential method

More Information
  • 摘要: 利用自制外控電位浮選槽研究了礦物粒度、礦漿pH值、外控電位大小等因素對黃銅礦和輝鉬礦浮選行為的影響, 從而找到二者分離的條件并進行了銅鉬混合精礦的外控電位浮選分離, 采用循環伏安測試和腐蝕電偶測試驗證了上述試驗結論. 研究結果表明, -150+31 μm的黃銅礦受外控電位影響大, 容易被抑制, 而輝鉬礦則不容易被抑制. -31 μm的黃銅礦和輝鉬礦可浮性均較差, 受外控電位影響較小. 外控電位浮選在堿性條件下進行有利于實現抑銅浮鉬. 在pH值11的條件下, 抑銅浮鉬的最佳分離外控電位為-1100~-700 mV(vs Ag/AgCl). 在pH值為11、外控電位-800 mV(vs Ag/AgCl)的條件下對多寶山銅鉬混合精礦進行浮選分離, 經過一次浮選分離可得到鉬回收率80.57%、銅回收率10.19%的鉬粗精礦, 輝鉬礦和黃銅礦的浮游差達到70.38%, 這使外控還原電位下浮選分離黃銅礦和輝鉬礦成為可能. 另外, 腐蝕電偶測試結果表明: 黃銅礦和輝鉬礦間的電偶腐蝕對于抑銅浮鉬浮選有促進作用.

     

  • 圖  1  自制40 mL浮選槽結構圖

    Figure  1.  Self-made 40 mL flotation cell structure

    圖  2  單礦物浮選流程圖

    Figure  2.  Single mineral flotation flowchart

    圖  3  外控還原電位下,不同粒級黃銅礦的浮選行為(vs Ag/AgCl)

    Figure  3.  Effect of externally controlled reduction potential on the flotation of chalcopyrite with different particle sizes

    圖  4  外控還原電位下,不同粒級輝鉬礦的浮選行為(vs Ag/AgCl)

    Figure  4.  Effect of externally controlled reduction potential on the flotation of molybdenite with different particle sizes

    圖  5  外控還原電位下,礦漿pH對黃銅礦和輝鉬礦浮選行為的影響(vs Ag/AgCl)

    Figure  5.  Effect of pulp pH on the externally controlled reduction potential flotation of chalcopyrite and molybdenite

    圖  6  外控電位大小對黃銅礦和輝鉬礦浮選行為的影響(pH值為11)

    Figure  6.  Effect of externally controlled potential on the flotation behavior of chalcopyrite and molybdenite (pH 11)

    圖  7  銅鉬混合精礦浮選流程圖

    Figure  7.  Chalcopyrite-molybdenite mixed concentrate flotation flowchart

    圖  8  黃銅礦和輝鉬礦在pH值為11的緩沖溶液中的循環伏安曲線. (a)黃銅礦;(b)輝鉬礦

    Figure  8.  Cyclic voltammetry of chalcopyrite and molybdenite in a buffer solution at pH 11: (a) chalcopyrite; (b) molybdenite

    圖  9  研究電極的Tafel曲線

    Figure  9.  Tafel curves of the electrode

    表  1  單礦物化學多元素分析結果

    Table  1.   Results of single mineral chemical multielement analysis

    礦物 元素質量分數/%
    Cu Fe Mo S 純度
    黃銅礦 33.18 30.75 31.66 96.01
    輝鉬礦 0.65 0.55 57.52 34.90 95.96
    下載: 導出CSV

    表  2  pH緩沖溶液的主要成分

    Table  2.   Main component of the pH buffer solution

    pH值 成分1 成分2
    3.00 CH3COOH HCl
    4.50 CH3COONa CH3COOH
    6.00 Na2HPO4 KH2PO4
    7.50 Na2HPO4 KH2PO4
    9.00 NaHCO3 Na2CO3
    10.00 NaHCO3 Na2CO3
    11.00 NaHCO3 NaOH
    12.00 Na2CO3 NaOH
    下載: 導出CSV

    表  3  銅鉬混合精礦外控電位浮選分離結果

    Table  3.   Results of chalcopyrite-molybdenite mixed concentrate by externally controlled potential flotation separation

    產品名稱 產率/% 鉬品位/% 銅品位/% 鉬回收率/% 銅回收率/%
    鉬粗精礦 10.73 4.13 16.52 80.57 10.19
    銅粗精礦 89.27 0.12 17.51 19.48 89.83
    銅鉬混合精礦 100.00 0.55 17.40 100.00 100.00
    下載: 導出CSV

    表  4  研究電極的Tafel參數

    Table  4.   Tafel parameters of the electrode

    工作電極 腐蝕電位,Ecorr/mV(vs Ag/AgCl) 腐蝕電流,icorr/(μA·cm-2)
    黃銅礦 -173 114.82
    輝鉬礦 -55 1.74
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Hu Y, Huang J P. Research progress on flotation technology and flotation reagents for copper-molybdenum ore. Yunnan Metall, 2014, 43(3): 9 doi: 10.3969/j.issn.1006-0308.2014.03.003

    胡元, 黃建平. 銅鉬礦的浮選工藝和浮選藥劑研究進展. 云南冶金, 2014, 43(3): 9 doi: 10.3969/j.issn.1006-0308.2014.03.003
    [2] Zhang N X, Liu W G, Wei D Z. Research progress of flotation separation and separation depressants of copper-molybdenum mixed concentrate. Met Mine, 2018(4): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804006.htm

    張乃旭, 劉文剛, 魏德洲. 銅鉬混合精礦浮選分離工藝及分離抑制劑研究進展. 金屬礦山, 2018(4): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804006.htm
    [3] Dai Z, Jiang T G, Fang J J, et al. Research progress on flotation separation of copper-molybdenum concentrate mixture. Min Process Equip, 2017, 45(4): 1 doi: 10.3969/j.issn.1001-3954.2017.04.001

    代宗, 蔣太國, 方建軍, 等. 銅鉬混合精礦浮選分離的研究進展. 礦山機械, 2017, 45(4): 1 doi: 10.3969/j.issn.1001-3954.2017.04.001
    [4] Hirajima T, Miki H, Suyantara G P W, et al. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation. Miner Eng, 2017, 100: 83 doi: 10.1016/j.mineng.2016.10.007
    [5] Guo H, Yen W T. Pulp potential and floatability of chalcopyrite. Miner Eng, 2003, 16(3): 247 doi: 10.1016/S0892-6875(03)00015-3
    [6] Heyes G W, Trahar W J. The natural floatability of chalcopyrite. Int J Miner Process, 1977, 4(4): 317 doi: 10.1016/0301-7516(77)90012-6
    [7] Wang J, Liu Z L, Chen G B, et al. Consumption mechanism of sodium sulfide in flotation separation of copper and molybdenum. J Northeast Univ Nat Sci, 2018, 39(3): 362 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201803012.htm

    王劍, 劉子龍, 陳國寶, 等. 銅鉬浮選分離中硫化鈉的消耗機理. 東北大學學報(自然科學版), 2018, 39(3): 362 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201803012.htm
    [8] Fu J G, Zhong H, Ou L M. Application of thioglycolic acid in molybdenite-copper sulphide separation. Min Metall Eng, 2002, 22(4): 36 doi: 10.3969/j.issn.0253-6099.2002.04.013

    符劍剛, 鐘宏, 歐樂明. 巰基乙酸在銅鉬分離中的應用. 礦冶工程, 2002, 22(4): 36 doi: 10.3969/j.issn.0253-6099.2002.04.013
    [9] Sun C Y, Wang F L, Shi J Z. Study on electrochemical control flotation of copper ore in erdenut copper mine in Mongolia. Min Metall, 2001, 10(1): 20

    孫傳堯, 王福良, 師建忠. 蒙古額爾登特銅礦的電化學控制浮選研究與實踐. 礦冶, 2001, 10(1): 20
    [10] Jiang Y R, Zhou L H, Xue Y L, et al. Separation of molybdenite from chalcopyrite using new depressant DPS. Min Metall Eng, 2001, 21(1): 33 doi: 10.3969/j.issn.0253-6099.2001.01.011

    蔣玉仁, 周立輝, 薛玉蘭, 等. 新型抑制劑浮選分離黃銅礦和輝鉬礦的研究. 礦冶工程, 2001, 21(1): 33 doi: 10.3969/j.issn.0253-6099.2001.01.011
    [11] Ou L M, Feng Q M, Chen J H, et al. A study on new type depressant for chalcopyrite in bulk concentrate of copper and molybdenum. Min Metall Eng, 1998, 18(1): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC801.008.htm

    歐樂明, 馮其明, 陳建華, 等. 銅鉬混合精礦體系中黃銅礦新型抑制劑的研究. 礦冶工程, 1998, 18(1): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC801.008.htm
    [12] Woods R. Electrochemical potential controlling flotation. Int J Miner Process, 2003, 72(1-4): 152 http://www.sciencedirect.com/science/article/pii/S0301751603000954
    [13] Salamy S G, Nixon J C. The application of electrochemical methods to flotation research. Inst Min Metall London, 1954: 503 http://www.researchgate.net/publication/284902595_The_application_of_electrochemical_methods_to_flotation_research
    [14] Hintikka V V, Leppinen J O. Potential control in the flotation of sulphide minerals and precious metals. Miner Eng, 1995, 8(10): 1151 doi: 10.1016/0892-6875(95)00080-A
    [15] Yu J, Yang H Y, Fan Y J. Effect of potential on characteristics of surface film on natural chalcopyrite. Trans Nonferrous Met Soc China, 2011, 21(8): 1880 doi: 10.1016/S1003-6326(11)60945-X
    [16] Ou L M, Feng Q M, Lu Y P, et al. A study on electrochemistry of depressing chalcopyrite in flotation. Min Metall Eng, 1999, 19(3): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC199903011.htm

    歐樂明, 馮其明, 盧毅屏, 等. 浮選過程中黃銅礦抑制的電化學研究. 礦冶工程, 1999, 19(3): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC199903011.htm
    [17] Gardner J R, Woods R. An electrochemical investigation of the natural floatability of chalcopyrite. Int J Miner Process, 1979, 6(1): 1
    [18] Qin W Q, Yao G C, Gu G H, et al. Electrochemistry of sulfide minerals and its floatability. Chin J Nonferrous Met, 2011, 21(10): 2669 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201110033.htm

    覃文慶, 姚國成, 顧幗華, 等. 硫化礦物的浮選電化學與浮選行為. 中國有色金屬學報, 2011, 21(10): 2669 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201110033.htm
    [19] Ou L M, Feng Q M, Zhang G F, et al. The distribution regularities of cell voltage among the electrodes of extra-potential-controlled floatation equipment. Sci Technol Eng, 2005, 5(7): 435 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200507012.htm

    歐樂明, 馮其明, 張國范, 等. 外控電位浮選設備中電極過程的電壓分布. 科學技術與工程, 2005, 5(7): 435 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200507012.htm
    [20] Yu J. Study on Foundation of Copper-Molybdenum Separation from Refroactory Ore and the Novel Extraction Process of Molybdenum[Dissertation]. Shenyang: Northeastern University, 2011

    俞娟. 難選銅鉬礦浮選分離基礎及鉬提取新工藝研究[學位論文]. 沈陽: 東北大學, 2011
  • 加載中
圖(9) / 表(4)
計量
  • 文章訪問數:  918
  • HTML全文瀏覽量:  373
  • PDF下載量:  21
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-09-25
  • 刊出日期:  2019-07-01

目錄

    /

    返回文章
    返回