Flotation separation of chalcopyrite and molybdenite by externally controlled potential method
-
摘要: 利用自制外控電位浮選槽研究了礦物粒度、礦漿pH值、外控電位大小等因素對黃銅礦和輝鉬礦浮選行為的影響, 從而找到二者分離的條件并進行了銅鉬混合精礦的外控電位浮選分離, 采用循環伏安測試和腐蝕電偶測試驗證了上述試驗結論. 研究結果表明, -150+31 μm的黃銅礦受外控電位影響大, 容易被抑制, 而輝鉬礦則不容易被抑制. -31 μm的黃銅礦和輝鉬礦可浮性均較差, 受外控電位影響較小. 外控電位浮選在堿性條件下進行有利于實現抑銅浮鉬. 在pH值11的條件下, 抑銅浮鉬的最佳分離外控電位為-1100~-700 mV(vs Ag/AgCl). 在pH值為11、外控電位-800 mV(vs Ag/AgCl)的條件下對多寶山銅鉬混合精礦進行浮選分離, 經過一次浮選分離可得到鉬回收率80.57%、銅回收率10.19%的鉬粗精礦, 輝鉬礦和黃銅礦的浮游差達到70.38%, 這使外控還原電位下浮選分離黃銅礦和輝鉬礦成為可能. 另外, 腐蝕電偶測試結果表明: 黃銅礦和輝鉬礦間的電偶腐蝕對于抑銅浮鉬浮選有促進作用.Abstract: Chalcopyrite-molybdenite separation has always been a major difficulty in mineral processing. At present, chemical agents are commonly used to regulate the pulp potential. However, the air flowing into the flotation process easily destroys the reducing atmosphere, resulting in the increase in reagent dosage. Externally controlled potential flotation can reduce the consumption of reagents by adding electrodes to the pulp to control the pulp potential. The effects of mineral size, pulp pH, and externally controlled potentials on the flotation behavior of chalcopyrite and molybdenite were investigated in the present work using a self-made externally controlled potential flotation cell. Under the optimal conditions, the separation test of Cu-Mo concentrate was conducted using the externally controlled potential flotation. The results were verified by cyclic voltammetry and galvanic corrosion tests. The results show that chalcopyrite with -150+31 μm fraction is considerably affected by externally controlled potentials and is easily inhibited, whereas molybdenite with -150+31 μm fraction is not easily inhibited. Chalcopyrite and molybdenite with -31 μm fraction have poor floatability and are less affected by externally controlled potentials. Externally controlled potential flotation is conducted under alkaline conditions to facilitate the inhibition of chalcopyrite and the flotation of molybdenite. In the case of pH 11, the optimal externally controlled potential for chalcopyrite-molybdenite separation is -1100 to -700 mV (vs Ag/AgCl). Under the conditions of pH 11 and externally controlled potential of -800 mV (vs Ag/AgCl), the Duobaoshan chalcopyrite-molybdenite mixed concentrate was separated by flotation. After one flotation cycle, the primary molybdenum concentrate with 80.57% recovery of molybdenum and 10.19% recovery of copper can be obtained. The flotation difference between molybdenite and chalcopyrite reaches 70.38%, which makes it possible to separate chalcopyrite and molybdenite by externally controlled reduction potential. In addition, galvanic corrosion between chalcopyrite and molybdenite promoted the flotation of molybdenite and the inhibition of chalcopyrite.
-
表 1 單礦物化學多元素分析結果
Table 1. Results of single mineral chemical multielement analysis
礦物 元素質量分數/% Cu Fe Mo S 純度 黃銅礦 33.18 30.75 — 31.66 96.01 輝鉬礦 0.65 0.55 57.52 34.90 95.96 表 2 pH緩沖溶液的主要成分
Table 2. Main component of the pH buffer solution
pH值 成分1 成分2 3.00 CH3COOH HCl 4.50 CH3COONa CH3COOH 6.00 Na2HPO4 KH2PO4 7.50 Na2HPO4 KH2PO4 9.00 NaHCO3 Na2CO3 10.00 NaHCO3 Na2CO3 11.00 NaHCO3 NaOH 12.00 Na2CO3 NaOH 表 3 銅鉬混合精礦外控電位浮選分離結果
Table 3. Results of chalcopyrite-molybdenite mixed concentrate by externally controlled potential flotation separation
產品名稱 產率/% 鉬品位/% 銅品位/% 鉬回收率/% 銅回收率/% 鉬粗精礦 10.73 4.13 16.52 80.57 10.19 銅粗精礦 89.27 0.12 17.51 19.48 89.83 銅鉬混合精礦 100.00 0.55 17.40 100.00 100.00 表 4 研究電極的Tafel參數
Table 4. Tafel parameters of the electrode
工作電極 腐蝕電位,Ecorr/mV(vs Ag/AgCl) 腐蝕電流,icorr/(μA·cm-2) 黃銅礦 -173 114.82 輝鉬礦 -55 1.74 www.77susu.com -
參考文獻
[1] Hu Y, Huang J P. Research progress on flotation technology and flotation reagents for copper-molybdenum ore. Yunnan Metall, 2014, 43(3): 9 doi: 10.3969/j.issn.1006-0308.2014.03.003胡元, 黃建平. 銅鉬礦的浮選工藝和浮選藥劑研究進展. 云南冶金, 2014, 43(3): 9 doi: 10.3969/j.issn.1006-0308.2014.03.003 [2] Zhang N X, Liu W G, Wei D Z. Research progress of flotation separation and separation depressants of copper-molybdenum mixed concentrate. Met Mine, 2018(4): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804006.htm張乃旭, 劉文剛, 魏德洲. 銅鉬混合精礦浮選分離工藝及分離抑制劑研究進展. 金屬礦山, 2018(4): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201804006.htm [3] Dai Z, Jiang T G, Fang J J, et al. Research progress on flotation separation of copper-molybdenum concentrate mixture. Min Process Equip, 2017, 45(4): 1 doi: 10.3969/j.issn.1001-3954.2017.04.001代宗, 蔣太國, 方建軍, 等. 銅鉬混合精礦浮選分離的研究進展. 礦山機械, 2017, 45(4): 1 doi: 10.3969/j.issn.1001-3954.2017.04.001 [4] Hirajima T, Miki H, Suyantara G P W, et al. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation. Miner Eng, 2017, 100: 83 doi: 10.1016/j.mineng.2016.10.007 [5] Guo H, Yen W T. Pulp potential and floatability of chalcopyrite. Miner Eng, 2003, 16(3): 247 doi: 10.1016/S0892-6875(03)00015-3 [6] Heyes G W, Trahar W J. The natural floatability of chalcopyrite. Int J Miner Process, 1977, 4(4): 317 doi: 10.1016/0301-7516(77)90012-6 [7] Wang J, Liu Z L, Chen G B, et al. Consumption mechanism of sodium sulfide in flotation separation of copper and molybdenum. J Northeast Univ Nat Sci, 2018, 39(3): 362 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201803012.htm王劍, 劉子龍, 陳國寶, 等. 銅鉬浮選分離中硫化鈉的消耗機理. 東北大學學報(自然科學版), 2018, 39(3): 362 https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201803012.htm [8] Fu J G, Zhong H, Ou L M. Application of thioglycolic acid in molybdenite-copper sulphide separation. Min Metall Eng, 2002, 22(4): 36 doi: 10.3969/j.issn.0253-6099.2002.04.013符劍剛, 鐘宏, 歐樂明. 巰基乙酸在銅鉬分離中的應用. 礦冶工程, 2002, 22(4): 36 doi: 10.3969/j.issn.0253-6099.2002.04.013 [9] Sun C Y, Wang F L, Shi J Z. Study on electrochemical control flotation of copper ore in erdenut copper mine in Mongolia. Min Metall, 2001, 10(1): 20孫傳堯, 王福良, 師建忠. 蒙古額爾登特銅礦的電化學控制浮選研究與實踐. 礦冶, 2001, 10(1): 20 [10] Jiang Y R, Zhou L H, Xue Y L, et al. Separation of molybdenite from chalcopyrite using new depressant DPS. Min Metall Eng, 2001, 21(1): 33 doi: 10.3969/j.issn.0253-6099.2001.01.011蔣玉仁, 周立輝, 薛玉蘭, 等. 新型抑制劑浮選分離黃銅礦和輝鉬礦的研究. 礦冶工程, 2001, 21(1): 33 doi: 10.3969/j.issn.0253-6099.2001.01.011 [11] Ou L M, Feng Q M, Chen J H, et al. A study on new type depressant for chalcopyrite in bulk concentrate of copper and molybdenum. Min Metall Eng, 1998, 18(1): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC801.008.htm歐樂明, 馮其明, 陳建華, 等. 銅鉬混合精礦體系中黃銅礦新型抑制劑的研究. 礦冶工程, 1998, 18(1): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC801.008.htm [12] Woods R. Electrochemical potential controlling flotation. Int J Miner Process, 2003, 72(1-4): 152 http://www.sciencedirect.com/science/article/pii/S0301751603000954 [13] Salamy S G, Nixon J C. The application of electrochemical methods to flotation research. Inst Min Metall London, 1954: 503 http://www.researchgate.net/publication/284902595_The_application_of_electrochemical_methods_to_flotation_research [14] Hintikka V V, Leppinen J O. Potential control in the flotation of sulphide minerals and precious metals. Miner Eng, 1995, 8(10): 1151 doi: 10.1016/0892-6875(95)00080-A [15] Yu J, Yang H Y, Fan Y J. Effect of potential on characteristics of surface film on natural chalcopyrite. Trans Nonferrous Met Soc China, 2011, 21(8): 1880 doi: 10.1016/S1003-6326(11)60945-X [16] Ou L M, Feng Q M, Lu Y P, et al. A study on electrochemistry of depressing chalcopyrite in flotation. Min Metall Eng, 1999, 19(3): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC199903011.htm歐樂明, 馮其明, 盧毅屏, 等. 浮選過程中黃銅礦抑制的電化學研究. 礦冶工程, 1999, 19(3): 34 https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC199903011.htm [17] Gardner J R, Woods R. An electrochemical investigation of the natural floatability of chalcopyrite. Int J Miner Process, 1979, 6(1): 1 [18] Qin W Q, Yao G C, Gu G H, et al. Electrochemistry of sulfide minerals and its floatability. Chin J Nonferrous Met, 2011, 21(10): 2669 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201110033.htm覃文慶, 姚國成, 顧幗華, 等. 硫化礦物的浮選電化學與浮選行為. 中國有色金屬學報, 2011, 21(10): 2669 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201110033.htm [19] Ou L M, Feng Q M, Zhang G F, et al. The distribution regularities of cell voltage among the electrodes of extra-potential-controlled floatation equipment. Sci Technol Eng, 2005, 5(7): 435 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200507012.htm歐樂明, 馮其明, 張國范, 等. 外控電位浮選設備中電極過程的電壓分布. 科學技術與工程, 2005, 5(7): 435 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200507012.htm [20] Yu J. Study on Foundation of Copper-Molybdenum Separation from Refroactory Ore and the Novel Extraction Process of Molybdenum[Dissertation]. Shenyang: Northeastern University, 2011俞娟. 難選銅鉬礦浮選分離基礎及鉬提取新工藝研究[學位論文]. 沈陽: 東北大學, 2011 -