Heat transfer and ablation of carbon/carbon composites based on multi-field coupling
-
摘要: 碳/碳復合材料作為熱防護材料多用在高超聲速飛行器鼻錐、機翼前緣等位置。為準確預測其傳熱及燒蝕響應,采用多場耦合策略,考慮外部流場熱化學非平衡效應、固體材料傳熱以及材料表面燒蝕,建立高超聲速氣動熱環境下碳/碳復合材料的流?熱?燒蝕多場耦合模型,預測碳/碳復合材料瞬態溫度場分布、燒蝕速率以及燒蝕外形變化等。計算得到材料模型駐點區壁面溫度和熱流值隨著時間的推移發生了顯著的變化,初始時刻熱流值較大,1 s時駐點熱流密度為17.22 MW?m?2,隨著時間推移,壁面溫度增大,駐點區溫度梯度減小,熱流值也減小,30 s時駐點熱流密度為10.22 MW?m?2。材料模型駐點區的溫度較高,材料表面反應活躍,燒蝕較為嚴重,而模型側面只發生少量燒蝕,燒蝕前后材料模型外形發生一定的變化,前緣半徑增大,30 s時材料駐點燒蝕深度為17.47 mm。結果表明:在高超聲速氣動熱環境下,碳/碳材料模型發生一定的燒蝕后退,導致外部流場以及熱載荷發生變化,采用流?熱?燒蝕多場耦合模型可有效預測不同時刻材料的傳熱及燒蝕響應,為熱防護系統的設計提供一定的參考。Abstract: With the development of hypersonic technology, the demand for thermal protection material is continuously increasing. Carbon/carbon composites are widely used as thermal protection materials in the nose and in the leading edge of hypersonic vehicles owing to their high latent heat and good resistance to high temperatures. The flow field around the aircraft affects the heat transfer and ablation of carbon/carbon composites, changing the thickness and shape of the thermal protection layer. The ablation of carbon/carbon composites alters the flow field distribution, thus conversely affecting the ablation of carbon/carbon composites. To predict the heat transfer and ablation of carbon/carbon composites, a multi-field coupling model was established to predict the transient temperature distribution, ablation rate, and ablation profile of carbon/carbon composites in hypersonic aerothermal environments. The thermochemical non-equilibrium effects of the flow field, heat transfer of the material, and ablation of the material surface were considered in the modeling. The wall temperature and heat flux in the stagnation area change significantly. The initial heat flux is higher and the stagnation heat flux at 1 s is 17.22 MW?m?2. As time passes, the wall temperature increases, the temperature gradient in the stagnation area decreases, the heat flux decreases, and the stagnation heat flux at 30 s is 10.22 MW?m?2. As the temperature of the stagnation area is high, the material at the surface reacts actively and the ablation is more serious, whereas only a small amount of ablation occurs on the side of the model. The shape of the material model changes after the ablation, the leading-edge radius increases, and the ablation depth at the material stagnation point is 17.47 mm at 30 s. The results show that, in the hypersonic aerodynamic thermal environment, the carbon/carbon composites have a certain ablation recession, which leads to change in the external flow field and thermal load. The multi-field flow-heat-ablation coupling model can be used to predict the response of thermal protection materials, which can provide some reference for the design of thermal protection systems.
-
表 1 碳/碳材料性能參數
Table 1. Performance parameters of carbon/carbon materials
Density/
(kg·m?3)Specific heat/
(J·kg?1·K?1)Thermal conductivity/
(W·m?1·k?1)Radiation coefficient Modulus of elasticity/
GPaPoisson’s
ratio1800 840 15 0.8 69 0.3 www.77susu.com -
參考文獻
[1] Karimi M S, Oboodi M J. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows. <italic>Heat Mass Transfer</italic>, 2019, 55(2): 547 doi: 10.1007/s00231-018-2416-1 [2] Wang L, Wang Y L. Research progress and trend analysis of hypersonic vehicle thermal protection technology. <italic>Aerosp Mater Technol</italic>, 2016, 46(1): 1 doi: 10.3969/j.issn.1007-2330.2016.01.001王璐, 王友利. 高超聲速飛行器熱防護技術研究進展和趨勢分析. 宇航材料工藝, 2016, 46(1):1 doi: 10.3969/j.issn.1007-2330.2016.01.001 [3] Sziroczak D, Smith H. A review of design issues specific to hypersonic flight vehicles. <italic>Prog Aerosp Sci</italic>, 2016, 84: 1 doi: 10.1016/j.paerosci.2016.04.001 [4] Gulli S, Maddalena L. Arc-jet testing of a variable-transpiration-cooled and uncoated carbon–carbon nose cone. <italic>J Spacecraft Rockets</italic>, 2019, 56(3): 780 doi: 10.2514/1.A34176 [5] Li Z P. Major advancement and development trends of TPS composites. <italic>Acta Mater Compos Sin</italic>, 2011, 28(2): 1李仲平. 防熱復合材料發展與展望. 復合材料學報, 2011, 28(2):1 [6] Albano M, Alifanov O M, Budnik S A, et al. Carbon/carbon high thickness shell for advanced space vehicles. <italic>Int J Heat Mass Transfer</italic>, 2019, 128: 613 doi: 10.1016/j.ijheatmasstransfer.2018.05.106 [7] Stern E C, Poovathingal S, Nompelis I, et al. Nonequilibrium flow through porous thermal protection materials, Part I: Numerical methods. <italic>J Comput Phys</italic>, 2019, 380: 408 doi: 10.1016/j.jcp.2017.09.011 [8] Natali M, Kenny J M, Torre L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: a review. <italic>Prog Mater Sci</italic>, 2016, 84: 192 doi: 10.1016/j.pmatsci.2016.08.003 [9] Wang Y Q, Risch T K, Koo J H. Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator. <italic>Aerosp Sci Technol</italic>, 2019, 91: 301 doi: 10.1016/j.ast.2019.05.039 [10] Tang S F, Hu C L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. <italic>J Mater Sci Technol</italic>, 2017, 33(2): 117 doi: 10.1016/j.jmst.2016.08.004 [11] Lee S, Park G, Kim J G, et al. Evaluation system for ablative material in a high-temperature torch. <italic>Int J Aeronaut Space Sci</italic>, 2019, 20: 620 doi: 10.1007/s42405-019-00185-2 [12] Helber B, Dias B, Bariselli F, et al. Analysis of meteoroid ablation based on plasma wind-tunnel experiments, surface characterization, and numerical simulations. <italic>Astrophys J</italic>, 2019, 876(2): 120 doi: 10.3847/1538-4357/ab16f0 [13] Zhang K L, Bai S X, Zhu L, et al. Ablation and surface heating behaviors of graphite based Ir-Al coating in a plasma wind tunnel. <italic>Surf Coat Technol</italic>, 2019, 358: 371 doi: 10.1016/j.surfcoat.2018.10.047 [14] Martin A, Boyd I D. Strongly coupled computation of material response and nonequilibrium flow for hypersonic ablation. <italic>J Spacecraft Rockets</italic>, 2015, 52(1): 89 doi: 10.2514/1.A32847 [15] Cross P G, Boyd I D. Reduced reaction mechanism for rocket nozzle ablation simulations. <italic>J Thermophys Heat Transfer</italic>, 2018, 32(2): 429 doi: 10.2514/1.T5291 [16] Mortensen C H, Zhong X L. Real gas and surface ablation effects on hypersonic boundary layer instability over a blunt cone. <italic>AIAA J</italic>, 2013, 54(3): 976 [17] Chen Y K, Milos F S. Multidimensional finite volume fully implicit ablation and thermal response code. <italic>J Spacecraft Rockets</italic>, 2018, 55(4): 914 doi: 10.2514/1.A34184 [18] Chen Y K, G?k?en T, Edquist K T. Two-dimensional ablation and thermal response analyses for mars science laboratory heat shield. <italic>J Spacecraft Rockets</italic>, 2015, 52(1): 134 doi: 10.2514/1.A32868 [19] Kumar R. Numerical investigation of gas-surface interactions due to ablation of high-speed vehicles. <italic>J Spacecraft Rockets</italic>, 2016, 53(3): 538 doi: 10.2514/1.A33433 [20] Li W J, Huang H M, Tian Y, et al. Nonlinear analysis on thermal behavior of charring materials with surface ablation. <italic>Int J Heat Mass Transfer</italic>, 2015, 84: 245 doi: 10.1016/j.ijheatmasstransfer.2015.01.004 [21] Candler G V, Alba C R, Greendyke R B. Characterization of carbon ablation models including effects of gas-phase chemical kinetics. <italic>J Thermophys Heat Transfer</italic>, 2017, 31(3): 512 doi: 10.2514/1.T4752 [22] Qin F, Peng L N, Li J, et al. Numerical simulations of multiscale ablation of carbon/carbon throat with morphology effects. <italic>AIAA J</italic>, 2017, 55(10): 3476 doi: 10.2514/1.J055534 [23] Yin T T, Zhang Z W, Li X F, et al. Modeling ablative behavior and thermal response of carbon/carbon composites. <italic>Comput Mater Sci</italic>, 2014, 95: 35 doi: 10.1016/j.commatsci.2014.07.013 [24] Meng S H, Zhou Y J, Xie W H, et al. Multiphysics coupled fluid/thermal/ablation simulation of carbon/carbon composites. <italic>J Spacecraft Rockets</italic>, 2016, 53(5): 930 doi: 10.2514/1.A33612 [25] Chen W. Numerical analyses of ablative behavior of C/C composite materials. <italic>Int J Heat Mass Transfer</italic>, 2016, 95: 720 doi: 10.1016/j.ijheatmasstransfer.2015.12.031 [26] Gupta R N, Yos J M, Thompson R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. <italic>NASA Reference Publication 1232</italic>, 1990 -