-
摘要: 頁巖氣儲層中存在大量的納微米孔隙,且孔隙裂縫結構復雜,氣體滲流阻力大,存在多尺度滲流的問題;頁巖氣儲層壓力擾動隨時間向外傳播并非瞬時到達無窮遠,其滲流規律就是一個壓力擾動邊緣動邊界的問題。基于對以上問題的研究,本文建立了滲透率分形分布和高斯分布的滲透率表征模型,對不同形態縫網壓裂特征就滲流規律進行了描述,并利用穩態依次替換法,考慮頁巖儲層中擴散、滑移及解吸作用,進一步研究了多級壓裂水平井不穩定滲流壓力擾動的傳播模型,得到不同壓裂條件下壓力擾動邊界隨時間變化的關系,并結合我國南方海相龍馬溪組頁巖氣藏儲層參數,應用MATLAB編程。研究表明:壓力傳播動邊界隨時間增加逐漸向外擴展,滲透率越小,壓力傳播越慢;未壓裂儲層壓力傳播速度<滲透率分形分布壓裂儲層傳播速度<滲透率高斯分布壓裂儲層傳播速度。對于滲透率極低的頁巖氣儲層,壓力傳播慢,氣井自然產能低,必須對頁巖氣儲層進行大規模的儲層壓裂改造,并控制壓裂程度,以提高頁巖氣開發效果;基于壓力傳播動邊界的擴展優化頁巖儲層壓裂井段間距90 m,優化滲透率分形分布壓裂井井間距318 m,滲透率高斯分布壓裂井井間距252 m。因此應合理控制頁巖儲層壓裂改造規模,實現優產高產。模型模擬結果與實際生產數據擬合較好,驗證了本研究理論模型的適用性。Abstract: Shale gas reservoirs are extremely tight, their pores are mainly nano-micron size, and their gas flow resistance is greater than that of conventional gases. Thus, the flow with low-velocity non-Darcy seepage characteristics of diffusion, slippage, and desorption needs to be solved. Moreover, the fractured reservoir has a complicated structure of pores and fractures, which causes the problem of multi-scale flow. The pressure disturbance propagates over time and does not instantaneously reach infinity. Another problem is that the moving boundary pressure disturbance of unstable seepage propagates slowly with time. Based on the above issues, in this paper, the permeability model of fractal distribution and Gaussian distribution was obtained to describe the different fracturing characteristics. Using the method of successive replacements of steady states and considering desorption, diffusion, and slippage, the mathematical model of unstable flowing pressure disturbance in a multistage fractured horizontal well was established. The moving characteristics of the different fractured conditions were compared and analyzed. The research shows that the pressure moving boundary increases with time, and the lower the permeability, the slower the pressure boundary moves. In general, the shale gas reservoir pressure propagates slowly, the natural productivity of the gas well is low, and the velocity of the pressure moving boundary of the matrix reservoir is less than the fractal distribution of the fractured reservoir and less than the Gaussian distribution of the fractured reservoir. Thus, it is necessary to carry out the large-scale fracturing treatment and reasonable control of the fracturing degree to improve the permeability as well as the development effect. When the production time is 6000 days, based on the moving boundary of the fractured horizontal well, the horizontal section length was optimized to 90 m. The optimum well distance of the well with fractal distribution permeability was 318 m, while the well with Gaussian distribution permeability was 252 m. Thus, the fracture treatment scale should be reasonably controlled to achieve optimal production and high yield.
-
Key words:
- shale gas /
- moving boundary /
- slip and diffusion /
- fracture /
- pressure characteristics
-
表 1 壓裂水平井壓裂生產參數
Table 1. Production parameters of the fractured well
井名 井類別 壓裂段數 平均壓裂段間距/m 實際生產時間/d 20年累計產氣量,EUR/(108 m3) CH1 I類 21 69.40 562 3.10 CH2 I類 19 71.68 670 1.76 CH3 II類 17 76.47 837 1.05 CH4 III類 22 72.50 681 0.76 表 2 頁巖氣儲層基礎模擬參數
Table 2. Simulation parameters of shale gas reservoir
基本參數 數值 基本參數 數值 儲層厚度,h/m 30 孔隙度,φ 0.05 井底流壓,pw/MPa 6 絕對滲透率,K0/(10?15 m2) 0.0005 邊界壓力,pe/MPa 24 標準狀態下氣體密度,ρgsc/(kg·m?3) 0.7 擴散系數,DK/(cm2·s?1) 8.4067×10?7 標準狀態下氣體壓縮因子,Zsc 1 井筒半徑,rw/m 0.1 標準狀態下溫度,Tsc/K 293 泄壓半徑,re/m 400 標準狀態下氣井產量,qsc/(m3·d?1) 200 壓縮因子,Z 0.89 標準狀態下壓力,psc/MPa 0.1 地層溫度,T/K 366.15 分形因數,α ?1.0 黏度,μ/(mPa·s) 0.027 尺度參數,σ 20 www.77susu.com -
參考文獻
[1] Li F H, Liu C Q. Pressure transient analysis for unsteady porous flow with start-up pressure derivative. Well Test, 1997, 6(1): 1李凡華, 劉慈群. 含啟動壓力梯度的不定常滲流的壓力動態分析. 油氣井測試, 1997, 6(1):1 [2] Liu C Q. Approximate solution of a starting gradient ratio consolidation problem. Chin J Geotech Eng, 1982, 4(3): 107 doi: 10.3321/j.issn:1000-4548.1982.03.010劉慈群. 有起始比降固結問題的近似解. 巖土工程學報, 1982, 4(3):107 doi: 10.3321/j.issn:1000-4548.1982.03.010 [3] Zhu S J. The propagation of pressure wave from low permeability reservoirs. Xinjiang Pet Geol, 2007, 28(1): 85 doi: 10.3969/j.issn.1001-3873.2007.01.023朱圣舉. 低滲透油藏的壓力波傳播規律. 新疆石油地質, 2007, 28(1):85 doi: 10.3969/j.issn.1001-3873.2007.01.023 [4] Wang X H, Qin S Y, Liu H, et al. Investigation radius calculation of non-darcy flow in low permeability media. J Oil Gas Technol, 2008, 30(5): 134 doi: 10.3969/j.issn.1000-9752.2008.05.033王新海, 秦世勇, 劉洪, 等. 低滲非達西滲流調查半徑計算方法. 石油天然氣學報, 2008, 30(5):134 doi: 10.3969/j.issn.1000-9752.2008.05.033 [5] Qiao W, Wang L Q, Zhang Z G, et al. Pressure wave propagation of fracturing well in ultra low permeability reservoir. Xinjiang Pet Geol, 2012, 33(2): 196喬煒, 王厲強, 張志剛, 等. 特低滲透油藏壓裂井的壓力波傳播規律. 新疆石油地質, 2012, 33(2):196 [6] Zhu W Y, Qi Q, Ma Q, et al. Unstable seepage modeling and pressure propagation of shale gas reservoirs. Pet Explor Dev, 2016, 43(2): 261朱維耀, 亓倩, 馬千, 等. 頁巖氣不穩定滲流壓力傳播規律和數學模型. 石油勘探與開發, 2016, 43(2):261 [7] Zhu W Y, Ma Q, Deng J, et al. Mathematical model and application of gas flow in nano-micron pores. J Univ Sci Technol Beijing, 2014, 36(6): 709朱維耀, 馬千, 鄧佳, 等. 納微米級孔隙氣體流動數學模型及應用. 北京科技大學學報, 2014, 36(6):709 [8] Zhang J C, Jin Z Y, Yuan M S. Reservoiring mechanism of shale gas and its distribution. Nat Gas Ind, 2004, 24(7): 15 doi: 10.3321/j.issn:1000-0976.2004.07.005張金川, 金之韻, 袁明生. 頁巖氣成藏機理和分布. 天然氣工業, 2004, 24(7):15 doi: 10.3321/j.issn:1000-0976.2004.07.005 [9] Zou C N, Dong D Z, Wang S J, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China. Pet Explor Dev, 2010, 37(6): 641鄒才能, 董大忠, 王社教, 等. 中國頁巖氣形成機理、地質特征及資源潛力. 石油勘探與開發, 2010, 37(6):641 [10] Qi Q, Zhu W Y, Deng J, et al. Seepage model and productivity prediction of fractured wells in shale gas reservoirs with discontinuous micro-fractures. Chin J Eng, 2016, 38(3): 306亓倩, 朱維耀, 鄧佳, 等. 含微裂縫頁巖儲層滲流模型及壓裂井產能. 工程科學學報, 2016, 38(3):306 [11] Yao J, Sun H, Fan D Y, et al. Transport mechanisms and numerical simulation of shale gas reservoirs. J China Univ Pet, 2013, 37(1): 91姚軍, 孫海, 樊冬艷, 等. 頁巖氣藏運移機制及數值模擬. 中國石油大學學報: 自然科學版, 2013, 37(1):91 [12] Liu J X, Shang X C, Zhu W Y. Numerical computation for nonlinear unsteady percolation of shale gas and prediction of production. Scientia Sinica Tech, 2015, 45(7): 737劉嘉璇, 尚新春, 朱維耀. 頁巖氣直井非穩態非線性滲流的數值計算及產能預測. 中國科學: 技術科學, 2015, 45(7):737 [13] Wu K L, Li X F, Wang C C, et al. A model for gas transport in microfractures of shale and tight gas reservoirs. AIChE J, 2015, 61(6): 2079 doi: 10.1002/aic.14791 [14] Zhu W Y, Qi Q. Study on the multi-scale nonlinear flow mechanism and model of shale gas. Scientia Sinica Tech, 2016, 46(2): 111朱維耀, 亓倩. 頁巖氣多尺度復雜流動機理與模型研究. 中國科學: 技術科學, 2016, 46(2):111 -