[1] |
Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci, 2011, 4(9): 3243 doi: 10.1039/c1ee01598b
|
[2] |
Shen X H, Tian Z Y, Fan R J, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J Energy Chem, 2018, 27(4): 1067 doi: 10.1016/j.jechem.2017.12.012
|
[3] |
Zuo X X, Zhu J, Müller-Buschbaum P, et al. Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy, 2017, 31: 113 doi: 10.1016/j.nanoen.2016.11.013
|
[4] |
Liu N A, Huo K F, Mcdowell M T, et al. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep, 2013, 3: 1919 doi: 10.1038/srep01919
|
[5] |
Liu N, Lu Z D, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnol, 2014, 9(3): 187 doi: 10.1038/nnano.2014.6
|
[6] |
Chan C K, Patel R N, O'Connell M J, et al. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano, 2010, 4(3): 1443 doi: 10.1021/nn901409q
|
[7] |
Shao D, Tang D P, Mai Y J, et al. Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J Mater Chem A, 2013, 1(47): 15068 doi: 10.1039/c3ta13616g
|
[8] |
Shim H C, Kim I, Woo C S, et al. Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with a long-cycle life and high capacity. Nanoscale, 2017, 9(14): 4713 doi: 10.1039/C7NR00965H
|
[9] |
Nguyen C C, Yoon T, Seo D M, et al. Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl Mater Interfaces, 2016, 8(19): 12211 doi: 10.1021/acsami.6b03357
|
[10] |
Zhao G Y, Zhang L, Meng Y F, et al. High storage performance of core-shell Si@C nanoparticles as lithium ion battery anodematerial. Mater Lett, 2013, 96: 170 doi: 10.1016/j.matlet.2013.01.073
|
[11] |
Cakan R D, Titirici M M, Antonietti M, et al. Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance. Chem Commun, 2008(32): 3759 doi: 10.1039/b805671b
|
[12] |
Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013, 135(4): 1167 doi: 10.1021/ja3091438
|
[13] |
Jung Y S, Lee K T, Oh S M. Si-carbon core-shell composite anode in lithium secondary batteries. Electrochim Acta, 2007, 52(24): 7061 doi: 10.1016/j.electacta.2007.05.031
|
[14] |
Liang J W, Li X N, Zhu Y C, et al. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res, 2014, 8(5): 1497
|
[15] |
Huang X K, Yang J, Mao S, et al. Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv Mater, 2014, 26(25): 4326 doi: 10.1002/adma.201400578
|
[16] |
Zhang L, Rajagopalan R, Guo H P, et al. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries. Adv Funct Mater, 2016, 26(3): 440 doi: 10.1002/adfm.201503777
|
[17] |
Yang L Y, Li H Z, Liu J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci Rep, 2015, 5: 10908 doi: 10.1038/srep10908
|
[18] |
Liu Y J, Tai Z X, Zhou T F, et al. An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for Lithium-ion batteries. Adv Mater, 2017, 29(44): 1703028 doi: 10.1002/adma.201703028
|
[19] |
Yang J P, Wang Y X, Chou S L, et al. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy, 2015, 18: 133 doi: 10.1016/j.nanoen.2015.09.016
|
[20] |
Devarapalli R R, Szunerits S, Coffinier Y, et al. Glucose-derived porous carbon-coated silicon nanowires as efficient electrodes for aqueous micro-supercapacitors. ACS Appl Mater Interfaces, 2016, 8(7): 4298 doi: 10.1021/acsami.5b11240
|
[21] |
Peled E, Patolsky F, Golodnitsky D, et al. Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries. Nano Lett, 2015, 15(6): 3907 doi: 10.1021/acs.nanolett.5b00744
|
[22] |
Prosini P P, Cento C, Alessandrini F, et al. Electrochemical characterization of silicon nanowires as an anode for lithium batteries. Solid State Ionics, 2014, 260: 49 doi: 10.1016/j.ssi.2014.03.004
|
[23] |
Ren W F, Zhang Z L, Wang Y H, et al. Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. J Mater Chem A, 2015, 3(11): 5859 doi: 10.1039/C4TA07093C
|
[24] |
Tao H C, Fan L Z, Qu X H. Facile synthesis of ordered porous Si@C nanorods as anode materials for Li-ion batteries. Electrochim Acta, 2012, 71: 194 doi: 10.1016/j.electacta.2012.03.139
|
[25] |
Wang W, Favors Z, Li C L, et al. Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries. Sci Rep, 2017, 7: 44838 doi: 10.1038/srep44838
|
[26] |
An W L, Gao B, Mei S X, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nature Commun, 2019, 10(1): 1447 doi: 10.1038/s41467-019-09510-5
|
[27] |
Cheng H, Xiao R, Bian H D, et al. Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries. Mater Chem Phys, 2014, 144(1-2): 25 doi: 10.1016/j.matchemphys.2013.12.003
|
[28] |
Qin Y L, Li F, Bai X B, et al. A novel Si film with Si nanocrystals embedded in amorphous matrix on Cu foil as anode for lithium ion batteries. Mater Lett, 2015, 138: 104 doi: 10.1016/j.matlet.2014.09.101
|
[29] |
Li J Y, Li G, Zhang J, et al. Rational design of robust Si/C microspheres for high-tap-density anode materials. ACS Appl Mater Interfaces, 2019, 11(4): 4057 doi: 10.1021/acsami.8b20213
|
[30] |
Xu Q, Li J Y, Sun J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater, 2017, 7(3): 1601481 doi: 10.1002/aenm.201601481
|
[31] |
Jia H P, Zheng J M, Song J H, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, 50: 589 doi: 10.1016/j.nanoen.2018.05.048
|
[32] |
Ko M, Chae S, Jeong S, et al. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano, 2014, 8(8): 8591 doi: 10.1021/nn503294z
|
[33] |
Zhou X S, Yin Y X, Wan L J, et al. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem Commun, 2012, 48(16): 2198 doi: 10.1039/c2cc17061b
|
[34] |
Liu J, Kopold P, van Aken P A, et al. Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew Chem Int Ed, 2015, 54(33): 9632 doi: 10.1002/anie.201503150
|
[35] |
Eom K, Joshi T, Bordes A, et al. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode., 2014, 249: 118
|