<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

具有微米纖維碳的硅/石墨/碳復合材料的制備及在鋰離子電池中的應用

安富強 何冬林 龐錚 李平

安富強, 何冬林, 龐錚, 李平. 具有微米纖維碳的硅/石墨/碳復合材料的制備及在鋰離子電池中的應用[J]. 工程科學學報, 2019, 41(10): 1307-1314. doi: 10.13374/j.issn2095-9389.2019.06.08.001
引用本文: 安富強, 何冬林, 龐錚, 李平. 具有微米纖維碳的硅/石墨/碳復合材料的制備及在鋰離子電池中的應用[J]. 工程科學學報, 2019, 41(10): 1307-1314. doi: 10.13374/j.issn2095-9389.2019.06.08.001
AN Fu-qiang, HE Dong-lin, PANG Zheng, LI Ping. Preparation of silicon/graphite/carbon composites with fiber carbon and their application in lithium-ion batteries[J]. Chinese Journal of Engineering, 2019, 41(10): 1307-1314. doi: 10.13374/j.issn2095-9389.2019.06.08.001
Citation: AN Fu-qiang, HE Dong-lin, PANG Zheng, LI Ping. Preparation of silicon/graphite/carbon composites with fiber carbon and their application in lithium-ion batteries[J]. Chinese Journal of Engineering, 2019, 41(10): 1307-1314. doi: 10.13374/j.issn2095-9389.2019.06.08.001

具有微米纖維碳的硅/石墨/碳復合材料的制備及在鋰離子電池中的應用

doi: 10.13374/j.issn2095-9389.2019.06.08.001
基金項目: 

中國博士后科學基金資助項目 2018M631335

中央高校基本科研資助項目 FRF-TP-18-024A1

詳細信息
    通訊作者:

    李平, E-mail: liping@ustb.edu.cn

  • 中圖分類號: TQ127

Preparation of silicon/graphite/carbon composites with fiber carbon and their application in lithium-ion batteries

More Information
  • 摘要: 以瀝青為軟碳原料,商業石墨的載體材料,通過高溫熱解法成功合成了硅/石墨/碳復合材料,同時原位生成了微米尺度的碳纖維.該硅/石墨/碳復合材料具有諸多優點,石墨片層堆疊之間的空隙為硅的體積膨脹提供了有效的空間,瀝青熱解碳材料的包覆能一定程度抑制硅基材料的體積效應和提高其電子電導率,同時微米級的碳纖維能提高材料的長程導電性和結構穩定性,從而極大的改善負極材料循環性能.通過電化學測試表明,硅/石墨/碳復合材料中硅/石墨/碳復合負極材料在200 mA·g-1電流密度下具有650 mA·h·g-1的可逆容量,在200 mA·g-1電流密度下經過500圈循環后容量保持率為92.8%,每圈的容量衰減率僅為0.014%,展現了優異的循環性能.

     

  • 圖  1  Si/G/C復合材料制備示意圖

    Figure  1.  Schematic of Si/G/C composite preparation process

    圖  2  石墨和Nano-Si的微觀形貌(a~b),Si/G/C復合材料前驅體B的微觀形貌圖(c~d)和Si/G/C復合材料微觀形貌圖(e~f)

    Figure  2.  Microstructure and morphology of graphite (a), nano-Si(b), Si/G/C(c-d), and Si/G/C(e-f)

    圖  3  Si/G/C復合材料TEM圖(a)和局部放大透射電鏡圖(b)

    Figure  3.  TEM morphology of Si/G/C (a) and magnifying TEM image (b)

    圖  4  Si/G/C、石墨及Nano-Si的X射線衍射圖譜(a)和Si/G/C復合材料的拉曼光譜圖(b)

    Figure  4.  X-ray diffraction patterns of Si/G/C, graphite, and nano-Si(a) and Raman spectrum of Si/G/C(b)

    圖  5  Si/G/C的熱重曲線

    Figure  5.  TG curve of Si/G/C

    圖  6  Si/G/C復合負極材料的前5圈的循環伏安曲線

    Figure  6.  CV curves of Si/G/C composite for first five consecutive CV sweeps

    圖  7  樣品的循環性能. (a) Si/G/C復合負極材料在0.2 A·g-1電流密度下的循環穩定性測試; (b) 納米硅在0.2 A·g-1電流密度下的循環穩定性測試; (c) Si/G/C復合負極材料在0.5 A·g-1電流密度下的循環穩定性測試

    Figure  7.  Cycling performances: (a) Si/G/C composite at 0.2 A·g-1; (b) nano-Si at 0.2 A·g-1; (c) long-term cycling performances of Si/G/C composite at 0.5 A·g-1

    圖  8  Si/G/C復合負極材料的倍率性能(a)及對應的充放電曲線(b)

    Figure  8.  Rate performance (a) and discharge/charge profiles of the Si/G/C composite (b)

    圖  9  Si/G/C電極循環前后的Nyquist圖

    Figure  9.  Nyquist plot of Si/G/C electrode before and after cycles

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci, 2011, 4(9): 3243 doi: 10.1039/c1ee01598b
    [2] Shen X H, Tian Z Y, Fan R J, et al. Research progress on silicon/carbon composite anode materials for lithium-ion battery. J Energy Chem, 2018, 27(4): 1067 doi: 10.1016/j.jechem.2017.12.012
    [3] Zuo X X, Zhu J, Müller-Buschbaum P, et al. Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy, 2017, 31: 113 doi: 10.1016/j.nanoen.2016.11.013
    [4] Liu N A, Huo K F, Mcdowell M T, et al. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Sci Rep, 2013, 3: 1919 doi: 10.1038/srep01919
    [5] Liu N, Lu Z D, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnol, 2014, 9(3): 187 doi: 10.1038/nnano.2014.6
    [6] Chan C K, Patel R N, O'Connell M J, et al. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano, 2010, 4(3): 1443 doi: 10.1021/nn901409q
    [7] Shao D, Tang D P, Mai Y J, et al. Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. J Mater Chem A, 2013, 1(47): 15068 doi: 10.1039/c3ta13616g
    [8] Shim H C, Kim I, Woo C S, et al. Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with a long-cycle life and high capacity. Nanoscale, 2017, 9(14): 4713 doi: 10.1039/C7NR00965H
    [9] Nguyen C C, Yoon T, Seo D M, et al. Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl Mater Interfaces, 2016, 8(19): 12211 doi: 10.1021/acsami.6b03357
    [10] Zhao G Y, Zhang L, Meng Y F, et al. High storage performance of core-shell Si@C nanoparticles as lithium ion battery anodematerial. Mater Lett, 2013, 96: 170 doi: 10.1016/j.matlet.2013.01.073
    [11] Cakan R D, Titirici M M, Antonietti M, et al. Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance. Chem Commun, 2008(32): 3759 doi: 10.1039/b805671b
    [12] Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013, 135(4): 1167 doi: 10.1021/ja3091438
    [13] Jung Y S, Lee K T, Oh S M. Si-carbon core-shell composite anode in lithium secondary batteries. Electrochim Acta, 2007, 52(24): 7061 doi: 10.1016/j.electacta.2007.05.031
    [14] Liang J W, Li X N, Zhu Y C, et al. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res, 2014, 8(5): 1497
    [15] Huang X K, Yang J, Mao S, et al. Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv Mater, 2014, 26(25): 4326 doi: 10.1002/adma.201400578
    [16] Zhang L, Rajagopalan R, Guo H P, et al. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries. Adv Funct Mater, 2016, 26(3): 440 doi: 10.1002/adfm.201503777
    [17] Yang L Y, Li H Z, Liu J, et al. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci Rep, 2015, 5: 10908 doi: 10.1038/srep10908
    [18] Liu Y J, Tai Z X, Zhou T F, et al. An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for Lithium-ion batteries. Adv Mater, 2017, 29(44): 1703028 doi: 10.1002/adma.201703028
    [19] Yang J P, Wang Y X, Chou S L, et al. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy, 2015, 18: 133 doi: 10.1016/j.nanoen.2015.09.016
    [20] Devarapalli R R, Szunerits S, Coffinier Y, et al. Glucose-derived porous carbon-coated silicon nanowires as efficient electrodes for aqueous micro-supercapacitors. ACS Appl Mater Interfaces, 2016, 8(7): 4298 doi: 10.1021/acsami.5b11240
    [21] Peled E, Patolsky F, Golodnitsky D, et al. Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries. Nano Lett, 2015, 15(6): 3907 doi: 10.1021/acs.nanolett.5b00744
    [22] Prosini P P, Cento C, Alessandrini F, et al. Electrochemical characterization of silicon nanowires as an anode for lithium batteries. Solid State Ionics, 2014, 260: 49 doi: 10.1016/j.ssi.2014.03.004
    [23] Ren W F, Zhang Z L, Wang Y H, et al. Preparation of porous silicon/carbon microspheres as high performance anode materials for lithium ion batteries. J Mater Chem A, 2015, 3(11): 5859 doi: 10.1039/C4TA07093C
    [24] Tao H C, Fan L Z, Qu X H. Facile synthesis of ordered porous Si@C nanorods as anode materials for Li-ion batteries. Electrochim Acta, 2012, 71: 194 doi: 10.1016/j.electacta.2012.03.139
    [25] Wang W, Favors Z, Li C L, et al. Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries. Sci Rep, 2017, 7: 44838 doi: 10.1038/srep44838
    [26] An W L, Gao B, Mei S X, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nature Commun, 2019, 10(1): 1447 doi: 10.1038/s41467-019-09510-5
    [27] Cheng H, Xiao R, Bian H D, et al. Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries. Mater Chem Phys, 2014, 144(1-2): 25 doi: 10.1016/j.matchemphys.2013.12.003
    [28] Qin Y L, Li F, Bai X B, et al. A novel Si film with Si nanocrystals embedded in amorphous matrix on Cu foil as anode for lithium ion batteries. Mater Lett, 2015, 138: 104 doi: 10.1016/j.matlet.2014.09.101
    [29] Li J Y, Li G, Zhang J, et al. Rational design of robust Si/C microspheres for high-tap-density anode materials. ACS Appl Mater Interfaces, 2019, 11(4): 4057 doi: 10.1021/acsami.8b20213
    [30] Xu Q, Li J Y, Sun J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater, 2017, 7(3): 1601481 doi: 10.1002/aenm.201601481
    [31] Jia H P, Zheng J M, Song J H, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, 50: 589 doi: 10.1016/j.nanoen.2018.05.048
    [32] Ko M, Chae S, Jeong S, et al. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano, 2014, 8(8): 8591 doi: 10.1021/nn503294z
    [33] Zhou X S, Yin Y X, Wan L J, et al. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem Commun, 2012, 48(16): 2198 doi: 10.1039/c2cc17061b
    [34] Liu J, Kopold P, van Aken P A, et al. Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew Chem Int Ed, 2015, 54(33): 9632 doi: 10.1002/anie.201503150
    [35] Eom K, Joshi T, Bordes A, et al. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode., 2014, 249: 118
  • 加載中
圖(9)
計量
  • 文章訪問數:  1035
  • HTML全文瀏覽量:  478
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-08
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回