<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于PCA和MCMC的貝葉斯方法的海下礦山水害源識別分析

顏丙乾 任奮華 蔡美峰 郭奇峰 王培濤

顏丙乾, 任奮華, 蔡美峰, 郭奇峰, 王培濤. 基于PCA和MCMC的貝葉斯方法的海下礦山水害源識別分析[J]. 工程科學學報, 2019, 41(11): 1412-1421. doi: 10.13374/j.issn2095-9389.2019.06.03.004
引用本文: 顏丙乾, 任奮華, 蔡美峰, 郭奇峰, 王培濤. 基于PCA和MCMC的貝葉斯方法的海下礦山水害源識別分析[J]. 工程科學學報, 2019, 41(11): 1412-1421. doi: 10.13374/j.issn2095-9389.2019.06.03.004
YAN Bing-qian, REN Fen-hua, CAI Mei-feng, GUO Qi-feng, WANG Pei-tao. Application of PCA and Bayesian MCMC to discriminate between water sources in seabed gold mines[J]. Chinese Journal of Engineering, 2019, 41(11): 1412-1421. doi: 10.13374/j.issn2095-9389.2019.06.03.004
Citation: YAN Bing-qian, REN Fen-hua, CAI Mei-feng, GUO Qi-feng, WANG Pei-tao. Application of PCA and Bayesian MCMC to discriminate between water sources in seabed gold mines[J]. Chinese Journal of Engineering, 2019, 41(11): 1412-1421. doi: 10.13374/j.issn2095-9389.2019.06.03.004

基于PCA和MCMC的貝葉斯方法的海下礦山水害源識別分析

doi: 10.13374/j.issn2095-9389.2019.06.03.004
基金項目: 國家自然科學基金面上資助項目(51774022);國家重點研發計劃資助項目(2017YFC0804101)
詳細信息
    通訊作者:

    E-mail:renfh_2001@163.com

  • 中圖分類號: TD741.7

Application of PCA and Bayesian MCMC to discriminate between water sources in seabed gold mines

More Information
  • 摘要: 海底金礦礦山水害對礦山生產、人員施工及礦山設備等產生較大威脅,是礦山開采中的自然災害之一,快速有效的判別出礦山水害水源對于事故的防治有重要意義。三山島金礦的巷道圍巖裂隙普遍并長期存在涌水現象,礦區開采中礦井水害的水源主要有海水、第四系水、基巖裂隙水、地下水等,為了準確快速的判別礦井水水源,有效預防礦井水突水及水害威脅,本研究結合監測點水樣的水文地質條件與不同監測點水樣的水化學成分分析,選取Mg2+、Na++K+、Ca2+、SO42?、Cl?和HCO3 ?共6項指標作為判別因子,通過主成分分析得出不同水樣的礦化程度。在貝葉斯算法分析原理的基礎上,將馬爾可夫鏈蒙特卡洛(Markov Chain Monte Carlo, MCMC)引入到貝葉斯方法中,運用統計軟件SPSS統計,構建貝葉斯判別分析模型,得出基于水樣樣本信息的算法估計的后驗分布,得出礦山水害水源的分析方法。運用三山島金礦水害取水點的水樣分析數據進行詳細的分析驗證,建立礦井突水水源模型,進行不同水樣的信息分析,得出貝葉斯統計函數并進行水源判別結果分析,驗證了貝葉斯礦山水害水源判別模型的準確性和實用性,對現場工作的開展和水害防治有一定的指導意義。

     

  • 圖  1  水樣主成分分析結果

    Figure  1.  Principal component analysis of water samples

    PC1(Principal Component1) = −0.004[18O] -0.034[2H] + 0.208[TDS] + 0.209[Cl] + 0.141[SO4] + 0.047[HCO3] + 0.193[Na] + 0.140[Ca] + 0.205[Mg]PC2(Principal Component2) = 0.306[18O] + 0.034[2H] + 0.015[TDS] + 0.034[Cl] + 0.155[SO4] + 0.239[HCO3] + 0.035[Na] + 0.251[Ca] + 0.042[Mg]

    圖  2  三山島金礦水樣的PIPER圖

    Figure  2.  PIPER diagram of water samples from Sanshandao gold mine

    圖  3  水樣中的離子比分布圖. (a)HCO3 ?+SO4 2?與Ca2++Mg2+的對比;(b)HCO3 ?與Ca2+的對比;(c)Cl?與Na+的對比;(d)SO4 2?與Ca2+的對比

    Figure  3.  Distribution of ion ratios in water samples: (a) comparison of HCO3 ?+SO4 2? and Ca2++Mg2+; (b) comparison of HCO3 ? and Ca2+; (c) comparison of Cl? and Na+; (d) comparison of SO4 2? and Ca2+

    圖  4  先驗信息和后驗信息分布. (a)先驗信息的直方圖;(b)先驗信息的常規殘差;(c)后驗信息的直方圖; (d)后驗信息的常規殘差

    Figure  4.  Distribution of prior and posterior information: (a) histogram of prior information; (b) conventional residuals of prior information; (c) histogram of posterior information; (d) conventional residuals of posterior information

    表  1  礦井突水水源判別的變量資料[26]

    Table  1.   Variable data for discrimination of water inrush sources in mine[26]

    序號ρ(HCO3 ?)/(mg·L?1)ρ(Cl?)/(mg·L?1)ρ(SO4 2?)/(mg·L?1)ρ(K++Na+)/(mg·L?1)ρ(Ca2+)/(mg·L?1)ρ(Mg2+)/(mg·L?1)水樣水源結果貝葉斯法判別結果
    1268.420585.52713.711707.5716.41175.5
    2295.323158.43097.913025.5651.31427.6
    3244.022644.03001.913025.5676.41412.4
    4237.924702.32977.913442.5876.81576.5
    5262.321408.62929.811957.5651.31366.9
    6274.523981.93122.013783751.51549.1
    7244.039112.34418.819692.52204.43049.7
    8268.421099.82881.811957.5576.21351.7
    9274.521614.62833.812395.5626.31369.9
    10286.724393.53314.113783776.61582.5
    11268.427790.33362.116362.5891.81767.8
    12317.332936.64130.6185051052.12126.3
    13323.436024.34514.8194481262.52423.9
    14329.538082.94682.9212951067.12530.2
    15335.633965.74156.019365926.92098.9
    16268.446317.25283.3255741703.43462.8
    17280.629848.93001.9157601392.81889.3
    18207.439626.74755.0211701853.73007.1
    19280.631392.73962.5174901112.22272.1
    20219.633348.23266.0165822148.32196.7
    21286.733183.73746.3173621242.52308.5
    22250.128654.93688.7159281042.11905.1
    23195.226184.43073.9135181162.31715.6
    24250.123467.22881.812912681.41458.0
    25244.023467.22881.812692825.61492.0
    26250.123879.13035.512892881.81569.8
    27250.143641.14956.7232261603.23134.7
    28225.735406.84169.0192501362.72478.6
    29268.434171.74265.1189101162.32269.6
    30323.437053.84514.820530.81202.42527.2
    31274.539112.34923.1212701468.92694.3
    32158.616468.32439.99412.5380.81125.1
    33152.516303.52267.19150392.81122.7
    34317.320585.52881.812847.5551.11184.6
    35225.719762.02473.511098.8551.11233.2
    36176.917456.32228.610112.5320.61093.5
    37140.389.076.861.2100.214.6
    38256.2212.3405.4200138.342.5
    39209.921.355.732.281.04.4
    40219.6257.0134.5133.7144.326.7
    下載: 導出CSV

    表  2  主成分載荷解釋方差

    Table  2.   Interpretation variance of principal component load

    主成分載荷特征值解釋方差/%累計解釋方差/%
    PC14.95272.69475.627
    PC21.33817.35480.735
    下載: 導出CSV

    表  3  匯聚組內矩陣

    Table  3.   Convergence intra-group matrix

    貝葉斯判別
    主要離子
    協方差相關性
    HCO3?Cl?SO42?K++Na+Ca2+Mg2+ HCO3?Cl?SO42?K++Na+Ca2+Mg2+
    HCO3?1814.82712616.8995054.195?195.334?3807.587?1747.6081.0000.0850.295?0.077?0.295?0.136
    Cl?12230598.9741177325.895?77121.740648781.708985384.1611.0000.838?0.3720.6120.935
    SO42?161555.942?1547.83128471.25394643.5461.000?0.0650.2340.781
    K++Na+3520.493?11349.173?4738.7081.000?0.631?0.265
    Ca2+91887.25460781.4401.0000.665
    Mg2+90803.6641.000
      注:協方差矩陣的自由度為36.
    下載: 導出CSV

    表  4  估算的分布參數(正態分布)

    Table  4.   Estimated distribution parameter

    判別離子種類特定位置質量濃度/(mg·L?1)特定標度
    HCO3?254.052547.52158
    Cl?25785.295011531.13636
    SO42?3187.67001298.60022
    K++Na+222.992570.41759
    Ca2+930.3350523.64955
    Mg2+1725.9400840.87415
    下載: 導出CSV

    表  5  抽樣指定項

    Table  5.   Sampling specified item

    抽樣方法樣本數置信區間水平/%置信區間類型
    MCMC100095.0百分位數
    下載: 導出CSV

    表  6  組統計

    Table  6.   Group statistics

    貝葉斯判別指標平均值標準差有效個案數(成列)
    類別因子未加權加權
    HCO3?239.488245.516051717.000
    Cl?21849.50593281.779551717.000
    SO42?2840.5529349.323111717.000
    K++Na+232.988261.521921717.000
    Ca2+680.2529225.752921717.000
    Mg2+1387.0647223.603221717.000
    HCO3?277.55007.8750744.000
    Cl?26503.65002808.2095044.000
    SO42?3200.0250167.9512144.000
    K++Na+203.125046.1598244.000
    Ca2+953.1750299.3819044.000
    Mg2+1697.1750160.1837144.000
    HCO3?276.973342.227831515.000
    Cl?36891.73334177.205991515.000
    SO42?4382.9933514.125831515.000
    K++Na+247.953355.247531515.000
    Ca2+1424.8400398.286481515.000
    Mg2+2572.0400413.277331515.000
    HCO3?206.500048.4276144.000
    Cl?144.9000108.7978944.000
    SO42?168.1000161.6680844.000
    K++Na+106.775075.3975444.000
    Ca2+115.950030.4018144.000
    Mg2+22.050016.3997044.000
    總計HCO3?254.052547.521584040.000
    Cl?25785.295011531.136364040.000
    SO42?3187.67001298.600224040.000
    K++Na+222.992570.417594040.000
    Ca2+930.3350523.649554040.000
    Mg2+1725.9400840.874154040.000
    下載: 導出CSV

    表  7  結構矩陣

    Table  7.   Structured matrix

    變量貝葉斯線性判別函數
    123
    Cl?0.7080.451?0.005
    SO42?0.6980.241?0.215
    Mg2+0.5790.580?0.300
    Ca2+0.3040.502?0.002
    HCO3?0.1160.1620.607
    K++Na+0.146?0.228?0.457
    下載: 導出CSV

    表  8  特征值

    Table  8.   Eigenvalue

    判別函數特征值方差百分數/%累計方差百分數/%典型相關性
    121.018a94.594.50.977
    21.139a5.199.60.730
    30.091a0.4100.00.289
      注:a表示在分析中使用了貝葉斯抽樣中涉及的前3個典則判別函數.
    下載: 導出CSV

    表  9  Wilks’ lambda值統計

    Table  9.   Wilks’ lambda statistics

    檢驗函數Wilks’ Lambda值卡方自由度顯著性
    1, 2, 30.019133.938180
    2, 30.42828.815100.001
    30.9172.96140.564
    下載: 導出CSV

    表  10  分類函數系數

    Table  10.   Coefficient of classification function

    貝葉斯判別指標系數MCMC抽樣a
    因子類別偏差標準誤差95%置信區間
    下限上限
    HCO3?0.1410.1150.235?0.1080.819
    0.1740.129b0.255b?0.083b0.924b
    0.1670.1400.303?0.1861.022
    0.2590.142c0.202c0.194c0.957c
    Cl?0.0060.0030.0060.0000.024
    0.0070.004b0.007b0.000b0.028b
    0.0080.0040.0080.0000.032
    ?0.0020.000c0.004c?0.012c0.006c
    SO42?0.007?0.0020.045?0.0810.096
    0.003?0.004b0.050b?0.091b0.101b
    0.007?0.0030.062?0.1170.128
    ?0.015?0.010c0.022c?0.083c0.002c
    K++Na+0.2740.1710.2430.1451.105
    0.2920.186b0.266b0.147b1.200b
    0.3500.2170.3080.1951.400
    0.1140.088c0.166c0.035c0.696c
    Ca2+0.0520.0300.061?0.0070.239
    0.0550.033b0.068b?0.007b0.258b
    0.0650.0350.081?0.0270.314
    0.0230.020c0.041c0.005c0.151c
    Mg2+?0.073?0.0340.085?0.3210.012
    ?0.075?0.036b0.094b?0.377b0.025b
    ?0.088?0.0380.119?0.4220.048
    0.0320.009c0.049c?0.040c0.161c
    總計?90.763?52.50059.017?302.110?76.470
    ?110.825?64.882b71.692b?376.573b?92.475b
    ?164.246?94.746102.085?534.464?141.437
    ?34.523?21.562c37.264c?163.988c?23.464c
      注:除非另行說明,否則自助抽樣結果基于1000個自助抽樣樣本;b表示基于985個樣本;c表示基于993個樣本.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li K P, Ma Fe S, Zhang H X, et al. Recharge source identification and evolution of inflowing water in a seabed gold mine. J Eng Geol, 2017, 25(1): 180

    李克蓬, 馬鳳山, 張洪訓, 等. 海底金礦礦坑涌水水源判識及演化研究. 工程地質學報, 2017, 25(1):180
    [2] Li C H, Bu L, Wei X M, et al. Current status and future trends of deep mining safety mechanism and disaster prevention and control. Chin J Eng, 2017, 39(8): 1129

    李長洪, 卜磊, 魏曉明, 等. 深部開采安全機理及災害防控現狀與態勢分析. 工程科學學報, 2017, 39(8):1129
    [3] Chai J F, Jin A B, Gao Y T, et al. Water inrush inoculation process in mines based on moment tensor inversion. Chin J Eng, 2015, 37(3): 267

    柴金飛, 金愛兵, 高永濤, 等. 基于矩張量反演的礦山突水孕育過程. 工程科學學報, 2015, 37(3):267
    [4] Li L P, Lei T, Li S C, et al. Risk assessment of water inrush in karst tunnels and software development. Arabian J Geosci, 2015, 8(4): 1843 doi: 10.1007/s12517-014-1365-3
    [5] Xu X, Tian K Y, Zheng J Y. Discrimination of mine water inrush source based on genetic BP neural network model. Ind Saf Environ Prot, 2017, 43(11): 21 doi: 10.3969/j.issn.1001-425X.2017.11.006

    徐星, 田坤云, 鄭吉玉. 基于遺傳BP神經網絡模型的礦井突水水源判別. 工業安全與環保, 2017, 43(11):21 doi: 10.3969/j.issn.1001-425X.2017.11.006
    [6] Chen H J, Li X B, Liu A H. Studies of water source determination method of mine water inrush based on Bayes’ multi-group stepwise discriminant analysis theory. Rock Soil Mech, 2009, 30(12): 3655 doi: 10.3969/j.issn.1000-7598.2009.12.016

    陳紅江, 李夕兵, 劉愛華. 礦井突水水源判別的多組逐步Bayes判別方法研究. 巖土力學, 2009, 30(12):3655 doi: 10.3969/j.issn.1000-7598.2009.12.016
    [7] Chen H J, Li X B, Liu A H, et al. Forecast method of water inrush quantity from coal floor based on distance discriminant analysis theory. J China Coal Soc, 2009, 34(4): 487 doi: 10.3321/j.issn:0253-9993.2009.04.011

    陳紅江, 李夕兵, 劉愛華, 等. 煤層底板突水量的距離判別分析預測方法. 煤炭學報, 2009, 34(4):487 doi: 10.3321/j.issn:0253-9993.2009.04.011
    [8] Liu Z X, Dang W G, He X Q. Undersea safety mining of the large gold deposit in Xinli District of Sanshandao Gold Mine. Int J Miner Metall Mater, 2012, 19(7): 574 doi: 10.1007/s12613-012-0598-y
    [9] Li X, Wang B, Liu Y, et al. Stochastic feature mapping for pac-bayes classification. Mach Learning, 2015, 101(1-3): 5 doi: 10.1007/s10994-015-5525-9
    [10] Yan H X, Moradkhani H. Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling. Nat Hazards, 2016, 81(1): 203 doi: 10.1007/s11069-015-2070-6
    [11] Zhou F, Bai X R. High-resolution sparse subband imaging based on Bayesian learning with hierarchical priors. IEEE Trans Geosci Remote Sensing, 2018, 56(8): 4568 doi: 10.1109/TGRS.2018.2827072
    [12] Ruijters E, Stoelinga M. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Comput Sci Rev, 2015(15-16): 29
    [13] Fisher R A. Inverse probability and the use of likelihood. Mathematical Proceed Cambridge Philosophical Soc, 1932, 28(3): 257 doi: 10.1017/S0305004100010094
    [14] Duan G L, Hu W X, Wang J R. Research on the natural image super-resolution reconstruction algorithm based on compressive perception theory and deep learning model. Neurocomputing, 2016, 208: 117 doi: 10.1016/j.neucom.2015.12.125
    [15] Unesi M, Noaparast M, Shafaei S Z, et al. Modeling the effects of ore properties on water recovery in the thickening process. Int J Miner Metall Mater, 2014, 21(9): 851 doi: 10.1007/s12613-014-0981-y
    [16] Huang Y X, Li G F, Bie Z H, et al. Reliability evaluation of distributed integrated energy system. Smart Power, 2017, 45(7): 43 doi: 10.3969/j.issn.1673-7598.2017.07.008

    黃玉雄, 李更豐, 別朝紅, 等. 分布式綜合能源系統可靠性評估. 智慧電力, 2017, 45(7):43 doi: 10.3969/j.issn.1673-7598.2017.07.008
    [17] Caroleo B, Palumbo E, Osella M, et al. A knowledge-based multi-criteria decision support system encompassing cascading effects for disaster management. Int J Inf Technol Decis Mak, 2018, 17(5): 1469 doi: 10.1142/S021962201850030X
    [18] Zhao P, Xiong L. Inverse problem for the identification of the source term in chlorine pipeline leak. Sci Technol Rev, 2013, 31(26): 48 doi: 10.3981/j.issn.1000-7857.2013.26.007

    趙培, 熊亮. 氯氣管道泄漏源項識別反演問題. 科技導報, 2013, 31(26):48 doi: 10.3981/j.issn.1000-7857.2013.26.007
    [19] Chen H Y, Teng Y G, Wang J S, et al. Event source identification of water pollution based on Bayesian-MCMC. J Hunan Univ Nat Sci, 2012, 39(6): 74

    陳海洋, 滕彥國, 王金生, 等. 基于Bayesian-MCMC方法的水體污染識別反問題. 湖南大學學報(自然科學版), 2012, 39(6):74
    [20] Yan X S, Sun J, Hu C Y. Research on contaminant sources identification of uncertainty water demand using genetic algorithm. Cluster Computing, 2017, 20(2): 1007 doi: 10.1007/s10586-017-0787-6
    [21] Kruschke J K, Liddell T M. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bull Rev, 2018, 25(1): 178 doi: 10.3758/s13423-016-1221-4
    [22] Lu F, Yan D H. Bayesian MCMC flood frequency analysis method based on generalized extreme value distribution and Metropolis-Hastings sampling algorithm. J Hydraul Eng, 2013, 44(8): 942

    魯帆, 嚴登華. 基于廣義極值分布和Metropolis-Hastings抽樣算法的貝葉斯MCMC洪水頻率分析方法. 水利學報, 2013, 44(8):942
    [23] Yang X T, Wang L B, Zhang Z W. The application of fisher approach to discrimination of mine water-inrush source. Sci Technol Inf, 2014(11): 97 doi: 10.3969/j.issn.1001-9960.2014.11.070

    楊曉彤, 王來斌, 張忠文. Fisher方法在礦井突水水源判別中的應用. 科技信息, 2014(11):97 doi: 10.3969/j.issn.1001-9960.2014.11.070
    [24] Liu A H, Liu Y P, Cheng L. Application of ternary mixture model in discrimination of underground mine water in rush. J Central S Univ Sci Technol, 2014, 45(8): 2768

    劉愛華, 劉銀朋, 程力. 三元混合模型在地下礦山涌水水源計算分析中的應用. 中南大學學報(自然科學版), 2014, 45(8):2768
    [25] Yang B B, Sui W H, Duan L H. Risk assessment of water inrush in an underground coal mine based on GIS and fuzzy set theory. Mine Water Environ, 2017, 36(4): 617 doi: 10.1007/s10230-017-0457-1
    [26] Li G Q, Ma F S, Meng Z P. Analysis of connectivity between undersea metal mine and overlying seawater in Xinli mine area. J Central S Univ Sci Technol, 2012, 43(10): 3938

    李國慶, 馬鳳山, 孟召平. 新立礦區海底金屬礦坑與上覆海水的連通性分析. 中南大學學報(自然科學版), 2012, 43(10):3938
    [27] Li G Q, Wang X Q, Yin G M. Application of principal component analysis in identifying the seepage of seawater into Xinli mine pit. Chin J Geol Hazard Control, 2014, 25(3): 83

    李國慶, 汪新慶, 尹改梅. 主成分分析法在判定新立礦井海水滲入中的應用. 中國地質災害與防治學報, 2014, 25(3):83
    [28] Sun W J, Zhou W F, Jiao J. Hydrogeological classification and water inrush accidents in China’s coal mines. Mine Water Environ, 2016, 35(2): 214 doi: 10.1007/s10230-015-0363-3
  • 加載中
圖(4) / 表(10)
計量
  • 文章訪問數:  1045
  • HTML全文瀏覽量:  780
  • PDF下載量:  41
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-03
  • 刊出日期:  2019-11-01

目錄

    /

    返回文章
    返回