Tannic acid compound as a corrosion inhibitor: film-forming characteristics and corrosion resistance
-
摘要: 單寧酸由于環保、價格低的特點在金屬保護方面應用廣泛,然而單一利用單寧酸作為緩蝕劑取得的效果有限,有研究表明鹽類與緩蝕劑復配可以改善緩蝕劑的緩蝕效果。在此基礎上進行單寧酸復配緩蝕劑的研究,采用兩種復配劑氯化鐵、鉬酸鈉分別與單寧酸(TA)緩蝕劑進行復配,研究其對碳鋼Q235的緩蝕效果。通過硫酸銅點滴實驗、浸泡實驗、電化學實驗對比氯化鐵、鉬酸鈉分別與單寧酸復配后在碳鋼表面的成膜特性及緩蝕效果。硫酸銅點滴液變色時間隨著單寧酸中氯化鐵和鉬酸鈉兩種化合物濃度的升高出現先增加后降低的趨勢;浸泡實驗可以看出在單寧酸中加入氯化鐵和鉬酸鈉后,碳鋼表面僅出現個別點蝕坑;根據電化學測試結果,對比加入氯化鐵前后單寧酸緩蝕劑對碳鋼的緩蝕效果,發現兩者的電荷轉移電阻由2698變為3711 Ω·cm2,腐蝕電流密度由2.734降為1.902 μA·cm?2。加入鉬酸鈉后,電荷轉移電阻和腐蝕電流密度存在明顯的增加與下降,電荷轉移電阻由2698變為5100 Ω·cm2,腐蝕電流密度由2.734降為0.714 μA·cm?2。在單寧酸中添加氯化鐵和鉬酸鈉都能改善單寧酸的緩蝕效果,其中單寧酸與鉬酸鈉復配的緩蝕效果更好。Abstract: Tannic acid (TA) is widely used to protect metals from corrosion because it is environmentally friendly and inexpensive. However, the single effect of TA used as corrosion inhibitor has been widely investigated and studies focusing on the corrosion inhibition effect have been limited. Some studies have proven that the addition of a compound corrosion inhibitor can considerably improve the corrosion inhibition efficiency of an inhibitor, and this method can be applied to TA. The corrosion inhibition effect of the combination of two compounds, FeCl3 and Na2MoO4, with TA was analyzed on carbon steel Q235. Copper sulfate drip test, soaking test, and electrochemical test were used to compare the film-forming characteristics and corrosion inhibition effect of the combination of FeCl3 and Na2MoO4 with TA on carbon steel surface. The discoloration time of copper sulfate droplets initially increases and subsequently decreases with the increase in the concentrations of FeCl3 and Na2MoO4 in TA. At the end of the soaking test, fewer pits are observed on the surface of carbon steel following the addition of FeCl3 and Na2MoO4 to the TA inhibitor. Based on the results of the electrochemical tests, the corrosion inhibition effects of the TA inhibitor on carbon steel before and after the addition of FeCl3 were compared. The results reveal that the charge transfer resistance of the two inhibitors increases from 2698 to 3711 Ω·cm2, and the corrosion current density decreases from 2.734 to 1.902 μA·cm?2. A clear increase and decrease in the charge transfer resistance and corrosion current density, respectively, are observed once Na2MoO4 is added. Further, the charge transfer resistance increases from 2698 to 5100 Ω·cm2, and the corrosion current density decreases from 2.734 to 0.714 μA·cm?2. The following conclusions can be drawn from these results: the addition of FeCl3 or Na2MoO4 to TA can both improve the corrosion inhibition effect of TA; the compound system of TA and Na2MoO4 exhibits a better corrosion inhibition effect compared with the compound system of TA and FeCl3.
-
Key words:
- tannic acid /
- low-carbon steel /
- compound /
- conversion film /
- corrosion resistance /
- electrochemistry
-
表 1 浸泡實驗對比圖表
Table 1. Comparison of soaking test
緩蝕劑 5 min 10 min 15 min 30 min 無 TA TA/Fe3+ TA/${\rm{MoO}}_4^{2 - }$ 表 2 電化學擬合參數
Table 2. Electrochemical fitting parameters
緩蝕劑 Rs/(Ω·cm2) Rct/(Ω·cm2) CPE Y/(10?5 S·sn·cm?2) n 無 30.1 1416 80.4 0.84 TA 18.3 2698 78.4 0.78 TA/Fe3+ 16.5 3711 34.5 0.75 ${\rm{TA}}/{\rm{MoO}}_4^{2 - }$ 13.2 5100 25.0 0.80 表 3 極化曲線擬合數據
Table 3. Polarization curve fitting data
緩蝕劑 Ecorr/V Icorr/(μA·cm?2) βa βc Rp/(Ω·cm?2) 無 ?0.862 6.012 113.8 217.5 5396 TA ?0.831 2.734 121.2 137.0 10213 TA/Fe3+ ?0.859 1.902 144.3 104.9 13867 ${\rm{TA}}/{\rm{MoO}}_4^{2 - }$ ?0.783 0.714 167.3 49.0 23048 www.77susu.com -
參考文獻
[1] Lei Y D, Tang Z H, Liao R J, et al. Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide. Green Chem, 2011, 13(7): 1655 doi: 10.1039/c1gc15081b [2] Li D D, Cai C, Yang M, et al. Progress in the application of tannic acid to the functional materials. Chin Polym Bull, 2017(9): 10李冬冬, 蔡超, 楊萌, 等. 基于單寧酸的功能材料研究進展. 高分子通報, 2017(9):10 [3] Wang J K, Liu B C, Cai L, et al. A chemical conversion film of tannic acid on A3 steel. J Nanjing Univ Chem Technol, 1996, 18(3): 54王濟奎, 劉寶春, 蔡璐, 等. A3鋼表面的單寧酸化學轉化膜. 南京化工大學學報, 1996, 18(3):54 [4] Kusmierek E, Chrzescijanska E. Tannic acid as corrosion inhibitor for metals and alloys. Mater Corros, 2015, 66(2): 169 doi: 10.1002/maco.201307277 [5] Wu S C. The application of tannic on surface technology. Surf Technol, 2000, 29(2): 36 doi: 10.3969/j.issn.1001-3660.2000.02.014吳雙成. 單寧酸在表面處理中的應用. 表面技術, 2000, 29(2):36 doi: 10.3969/j.issn.1001-3660.2000.02.014 [6] Ma Z H, Lu Z B, Shi B. Chemical properties and application of tannic acid. Nat Prod Res Dev, 2003, 15(1): 87 doi: 10.3969/j.issn.1001-6880.2003.01.023馬志紅, 陸忠兵, 石碧. 單寧酸的化學性質及應用. 天然產物研究與開發, 2003, 15(1):87 doi: 10.3969/j.issn.1001-6880.2003.01.023 [7] Hou Y C. Preparation and Biological Properties of the Conversion Coating on the AZ60 Magnesium Alloy[Dissertation]. Changchun: Jilin University, 2015侯泳村. AZ60鎂合金表面轉化膜的制備及生物性能研究[學位論文]. 長春: 吉林大學, 2015 [8] Zhang S F, Zhang R F, Li W K, et al. Effects of tannic acid on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloy. Surf Coat Technol, 2012, 207: 170 doi: 10.1016/j.surfcoat.2012.06.056 [9] Zhang Z G, Ma Q L. Application of modified tannic inhibitor in the iron relics. Surf Technol, 2017, 46(2): 27張治國, 馬清林. 單寧酸復配緩蝕劑在鐵質文物上的應用研究. 表面技術, 2017, 46(2):27 [10] Xu W H, Han E H, Wang Z Y. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution. J Mater Sci Technol, 2019, 35(1): 64 doi: 10.1016/j.jmst.2018.09.001 [11] Hao Y S, Sani L A, Ge T J, et al. The synergistic inhibition behaviour of tannic acid and iodide ions on mild steel in H2SO4 solutions. Corros Sci, 2017, 123: 158 doi: 10.1016/j.corsci.2017.05.001 [12] Yü Y C, Li N, Hu H L, et al. Research development of non-chromate and tri-chromium passivation. Surf Technol, 2005, 34(5): 6 doi: 10.3969/j.issn.1001-3660.2005.05.002于元春, 李寧, 胡會利, 等. 無鉻鈍化與三價鉻鈍化的研究進展. 表面技術, 2005, 34(5):6 doi: 10.3969/j.issn.1001-3660.2005.05.002 [13] Yang L H, Li J Q, Yu X, et al. Molybdate conversion coatings on AZ31 magnesium alloy. Chin J Nonferrous Met, 2008, 18(7): 1211 doi: 10.3321/j.issn:1004-0609.2008.07.007楊黎暉, 李峻青, 于湘, 等. AZ31鎂合金鉬酸鹽轉化膜. 中國有色金屬學報, 2008, 18(7):1211 doi: 10.3321/j.issn:1004-0609.2008.07.007 [14] Gong L, Lu Y P. Modification and corrosion resistance of molybdate passivation film on hot dip galvanized steel sheet. J Iron Steel Res, 2007, 19(3): 88 doi: 10.3321/j.issn:1001-0963.2007.03.022宮麗, 盧燕平. 熱鍍鋅鋼板鉬酸鹽鈍化膜的改性及耐蝕性. 鋼鐵研究學報, 2007, 19(3):88 doi: 10.3321/j.issn:1001-0963.2007.03.022 [15] Wu D, Liu G J, Sun R Y, et al. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction. Energy Fuels, 2013, 27(10): 5823 doi: 10.1021/ef401276h [16] Painter P, Starsinic M, Coleman M. Determination of functional groups in coal by Fourier transform interferometry. Fourier Transform Infrared Spectrosc, 1985, 12(2): 169 [17] Painter P C, Snyder R W, Starsinic M, et al. Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs. Appl Spectrosc, 1981, 35(5): 475 doi: 10.1366/0003702814732256 [18] Ross T K, Francis R A. The treatment of rusted steel with mimosa tannin. Corros Sci, 1978, 18(4): 351 doi: 10.1016/S0010-938X(78)80049-3 [19] Hung H M, Linh D K, Chinh N T, et al. Improvement of the corrosion protection of polypyrrole coating for CT3 mild steel with 10-camphorsulfonic acid and molybdate as inhibitor dopants. Prog Org Coat, 2019, 131: 407 doi: 10.1016/j.porgcoat.2019.03.006 [20] Rammelt U, Duc L M, Plieth W. Improvement of protection performance of polypyrrole by dopant anions. J Appl Electrochem, 2005, 35(12): 1225 doi: 10.1007/s10800-005-9033-7 -