<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高海拔寒區巖質邊坡變形破壞機制研究現狀及趨勢

李長洪 肖永剛 王宇 卜磊 侯志強

李長洪, 肖永剛, 王宇, 卜磊, 侯志強. 高海拔寒區巖質邊坡變形破壞機制研究現狀及趨勢[J]. 工程科學學報, 2019, 41(11): 1374-1386. doi: 10.13374/j.issn2095-9389.2019.05.07.004
引用本文: 李長洪, 肖永剛, 王宇, 卜磊, 侯志強. 高海拔寒區巖質邊坡變形破壞機制研究現狀及趨勢[J]. 工程科學學報, 2019, 41(11): 1374-1386. doi: 10.13374/j.issn2095-9389.2019.05.07.004
LI Chang-hong, XIAO Yong-gang, WANG Yu, BU Lei, HOU Zhi-qiang. Review and prospects for understanding deformation and failure of rock slopes in cold regions with high altitude[J]. Chinese Journal of Engineering, 2019, 41(11): 1374-1386. doi: 10.13374/j.issn2095-9389.2019.05.07.004
Citation: LI Chang-hong, XIAO Yong-gang, WANG Yu, BU Lei, HOU Zhi-qiang. Review and prospects for understanding deformation and failure of rock slopes in cold regions with high altitude[J]. Chinese Journal of Engineering, 2019, 41(11): 1374-1386. doi: 10.13374/j.issn2095-9389.2019.05.07.004

高海拔寒區巖質邊坡變形破壞機制研究現狀及趨勢

doi: 10.13374/j.issn2095-9389.2019.05.07.004
基金項目: 國家重點研發計劃課題資助項目(2018YFC0808402)
詳細信息
    通訊作者:

    E-mail:b20170013@xs.ustb.edu.cn

  • 中圖分類號: P642.3

Review and prospects for understanding deformation and failure of rock slopes in cold regions with high altitude

More Information
  • 摘要: 高海拔寒區礦山巖質邊坡變形破壞機制研究已取得一定的研究成果,但基于現行理論與技術還難以全面解決未來高寒邊坡失穩機理和災害防控的所有問題,至今尚未建立起完善的高寒邊坡開采研究體系和邊坡穩定性判別標準. 本文對高寒巖質邊坡變形破壞的室內巖石力學試驗、邊坡物理相似模擬、多場多相耦合數值模擬、變形破壞原位監測、高海拔寒區巖質邊坡失穩機理五個方面開展了大量的文獻調研,總結高寒巖體變形破壞有關的研究成果,繼而對存在的問題進行探討并分析當前研究的不足,總結出高寒巖質邊坡變形破壞研究領域亟待解決的關鍵問題:一是開采擾動條件下高海拔寒區礦山邊坡巖體結構損傷劣化機制,二是凍融循環條件下流?固?氣多相多場耦合邊坡失穩時效特征與評價方法;并就未來高寒邊坡變形和破壞研究方向及發展趨勢予以分析,指出開展不同應力路徑凍融循環耦合作用下巖體結構損傷劣化機理研究,開展爆破采動條件下高海拔寒區巖質邊坡結構面致潰機制及邊坡失穩破壞研究,開展地震荷載作用下高海拔寒區節理巖質邊坡地震動力響應及致災規律研究,研究多場多相耦合條件下節理巖體損傷劣化機理,開展高海拔寒區礦山邊坡抗寒多參量實時安全監測及失穩預警技術研究五個方面是未來研究的趨勢.

     

  • 圖  1  砂巖在不同飽和度下的凍脹變形與單軸拉伸變形對比[4]

    Figure  1.  Comparison of frost heave deformation and uniaxial tensile deformation of sandstone at different saturation levels[4]

    圖  2  凍結溫度設定在?5 ℃和?15 ℃時讀出數據[10]. (a)巖樣中傳感器溫度隨時間的變化;(b)放熱峰前CT切片及裂縫半高全寬值曲線;(c)放熱峰后CT切片及裂縫半高全寬值曲線

    Figure  2.  Readouts of freezing temperature with set points ?5 ℃ and ?15 ℃[10] : (a) the temperature of the sensor in the rock sampler as a function of time; (b) CT slice and Full Width Half Maximum (fwhm) before the exothermal peak; (c) CT slice and Full Width Half Maximum (fwhm) after the exothermal peak

    圖  3  巖體工程受環境因素及內在因素影響[15]

    Figure  3.  Effects of environmental and internal factors on rock mass engineering[15]

    圖  4  巖?水?冰系統與多場耦合關系[38]

    Figure  4.  Relationship of coupled rock?water?ice system[38]

    圖  5  凍融循環條件下巖質邊坡的聲發射率[47]

    Figure  5.  Acoustic emissions of rock slopes under freeze–thaw cycle[47]

    圖  6  高寒巖質邊坡凍融破壞示意圖[63]. (a)裂隙充水;(b)產生新裂隙;(c)裂隙擴展;(d)表面崩塌

    Figure  6.  Freeze–thaw failure diagrams of alpine rock slopes[63]: (a) fracture filling; (b) new fractures extension; (c) melt water flow into the extension fractures; (d)surface collapse

    表  1  不同監測技術的特點[54]

    Table  1.   Characteristics of different monitoring technologies[54]

    監測技術 精度 平均掃描時間 空間分辨率 范圍 信息密度
    GB-InSAR ≤mm <3 min(不限覆蓋范圍) 連續圖像,成千上萬像素 ≤4 km
    真實孔徑雷達 ≤mm 5~30 min(依據覆蓋范圍) 連續圖像,幾千像素 ≤2.5 km 高、中
    激光掃描儀 ≤cm 幾分鐘~幾小時(依據覆蓋范圍) 連續圖像,百萬點 ≤3 km 超高
    自動化全站儀 mm 幾十分鐘 逐點 ≤1 km 逐點
    全球導航衛星系統(RAR) ≤cm 幾分鐘 逐點 幾十公里 逐點
    下載: 導出CSV

    表  2  邊坡穩定性分析方法

    Table  2.   Slope stability analysis methods

    工程地質分析法 極限平衡分析法 極限分析法 數值分析方法 可靠性分析方法
    分析邊坡地質體成因、演化史、變形破壞方式、力學機制、影響穩定性的因素等,是定性分析方法 假設邊坡出現滑動面且處于極限平衡狀態,然后將邊坡離散成有垂直邊界的剛體條塊,建立條塊之間的靜力平衡方程,通過求解靜力平衡方程得到邊坡的安全系數 將滑坡體看作服從流動法則的理想塑性材料,以極限狀態時自重和外荷載所做的功等于滑裂面上阻力所消耗的功為條件,結合塑性極限分析的上、下限定理,求得邊坡極限荷載與安全系數 基于強度折減的有限元法(SRM)、基于滑面應力分析的有限元法(SSA)、有限差分法、有限單元法、邊界元法、無單元法、無網格法、離散單元法、不連續變形分析方法、快速拉格朗日插值方法、流形元方法等 蒙特卡洛模擬法(Monte Carlo)一次二階矩法 統計矩法 隨機有限元法
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ministry of Natural Resources of the People’s Republic of China. National Mineral Resources Planning (2016−2020)[EB/OL]. Ministry of Natural Resources (2016−11−15)[2019−05−07]. http://g.mnr.gov.cn/201701/t20170123_1430456.html

    中華人民共和國自然資源部. 全國礦產資源規劃(2016−2020年)[EB/OL]. 自然資源部 (2016−11−15)[2019−05−07]. http://g.mnr.gov.cn/201701/t20170123_1430456.html
    [2] Ke B, Zhou K P, Deng H W, et al. NMR pore structure and dynamic characteristics of sandstone caused by ambient freeze-thaw action. Shock Vib, 2017, 2017: 1
    [3] ?nce ?, Fener M. A prediction model for uniaxial compressive strength of deteriorated pyroclastic rocks due to freeze–thaw cycle. J Afr Earth Sci, 2016, 120: 134 doi: 10.1016/j.jafrearsci.2016.05.001
    [4] Jia H L, Xiang W, Krautblatter M. Quantifying rock fatigue and decreasing compressive and tensile strength after repeated freeze-thaw cycles. Permafrost Periglac Processes, 2015, 26(4): 368 doi: 10.1002/ppp.1857
    [5] Han T L, Shi J P, Cao X S. Fracturing and damage to sandstone under coupling effects of chemical corrosion and freeze–thaw cycles. Rock Mech Rock Eng, 2016, 49(11): 4245 doi: 10.1007/s00603-016-1028-7
    [6] Chen Y L, Wu P, Yu Q, et al. Effects of freezing and thawing cycle on mechanical properties and stability of soft rock slope. Adv Mater Sci Eng, 2017, 2017: 1
    [7] Luo X D, Jiang N, Zuo C Q, et al. Damage characteristics of altered and unaltered diabases subjected to extremely cold freeze–thaw cycles. Rock Mech Rock Eng, 2014, 47(6): 1997 doi: 10.1007/s00603-013-0516-2
    [8] Ghobadi M H, Babazadeh R. Experimental studies on the effects of cyclic freezing–thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones. Rock Mech Rock Eng, 2015, 48(3): 1001 doi: 10.1007/s00603-014-0609-6
    [9] Fang X Y, Xu J Y, Wang P X. Compressive failure characteristics of yellow sandstone subjected to the coupling effects of chemical corrosion and repeated freezing and thawing. Eng Geol, 2018, 233: 160 doi: 10.1016/j.enggeo.2017.12.014
    [10] De Kock T, Boone M A, De Schryver T, et al. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze–thaw cycling. Environ Sci Technol, 2015, 49(5): 2867 doi: 10.1021/es505738d
    [11] Yang G S, Wei Y, Shen Y J, et al. Mechanical behavior and strength forecast model of frozen saturated sandstone under triaxial compression. Chin J Rock Mech Eng, 2019, 38(4): 683

    楊更社, 魏堯, 申艷軍, 等. 凍結飽和砂巖三軸壓縮力學特性及強度預測模型研究. 巖石力學與工程學報, 2019, 38(4):683
    [12] Zhang H M, Xia H J, Yang G S, et al. Experimental research of influences of freeze-thaw cycles and confining pressure on physical-mechanical characteristics of rocks. J China Coal Soc, 2018, 43(2): 441

    張慧梅, 夏浩峻, 楊更社, 等. 凍融循環和圍壓對巖石物理力學性質影響的試驗研究. 煤炭學報, 2018, 43(2):441
    [13] Shen Y J, Yang G S, Wang M, et al. Experiments on the damage characteristics and fracture process of single-joint quasi-sandstone under the cyclic freezing-thawing and cyclic loading. Chin J Rock Mech Eng, 2018, 37(3): 709

    申艷軍, 楊更社, 王銘, 等. 凍融–周期荷載下單裂隙類砂巖損傷及斷裂演化試驗分析. 巖石力學與工程學報, 2018, 37(3):709
    [14] Shen Y J, Yang G S, Wang M, et al. Experimental and theoretical study on thermal conductivity of rock under cyclic freezing and thawing. Chin J Rock Mech Eng, 2016, 35(12): 2417

    申艷軍, 楊更社, 王銘, 等. 凍融循環過程中巖石熱傳導規律試驗及理論分析. 巖石力學與工程學報, 2016, 35(12):2417
    [15] Zhang Q B, Zhao J. A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng, 2014, 47(4): 1411 doi: 10.1007/s00603-013-0463-y
    [16] Ke B, Zhou K P, Xu C S, et al. Dynamic mechanical property deterioration model of sandstone caused by freeze–thaw weathering. Rock Mech Rock Eng, 2018, 51(9): 2791 doi: 10.1007/s00603-018-1495-0
    [17] Wang P, Xu J Y, Fang X Y, et al. Energy dissipation and damage evolution analyses for the dynamic compression failure process of red-sandstone after freeze-thaw cycles. Eng Geol, 2017, 221: 104 doi: 10.1016/j.enggeo.2017.02.025
    [18] Wang P, Xu J Y, Liu S, et al. A prediction model for the dynamic mechanical degradation of sedimentary rock after a long-term freeze-thaw weathering: Considering the strain-rate effect. Cold Reg Sci Technol, 2016, 131: 16 doi: 10.1016/j.coldregions.2016.08.003
    [19] Wang P, Xu J Y, Liu S, et al. Static and dynamic mechanical properties of sedimentary rock after freeze-thaw or thermal shock weathering. Eng Geol, 2016, 210: 148 doi: 10.1016/j.enggeo.2016.06.017
    [20] Zhou K P, Li B, Li J L, et al. Microscopic damage and dynamic mechanical properties of rock under freeze–thaw environment. Trans Nonferrous Met Soc China, 2015, 25(4): 1254 doi: 10.1016/S1003-6326(15)63723-2
    [21] Li J L, Kaunda R B, Zhou K P. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone. Cold Reg Sci Technol, 2018, 154: 133 doi: 10.1016/j.coldregions.2018.06.015
    [22] Zhang J, Deng H W, Deng J R, et al. Development of energy-based brittleness index for sandstone subjected to freeze-thaw cycles and impact loads. IEEE Access, 2018, 6: 48522 doi: 10.1109/ACCESS.2018.2867349
    [23] Liu C J, Deng H W, Zhao H T, et al. Effects of freeze-thaw treatment on the dynamic tensile strength of granite using the Brazilian test. Cold Reg Sci Technol, 2018, 155: 327 doi: 10.1016/j.coldregions.2018.08.022
    [24] Ma Q Y, Ma D D, Yao Z M. Influence of freeze-thaw cycles on dynamic compressive strength and energy distribution of soft rock specimen. Cold Reg Sci Technol, 2018, 153: 10 doi: 10.1016/j.coldregions.2018.04.014
    [25] Li W G. Study on Stability in Rocky Layered Slope under Blasting Vibration[Dissertation]. Chengdu: Southwest Jiaotong University, 2008

    李維光. 爆破振動作用下順層巖質邊坡穩定性研究[學位論文]. 成都: 西南交通大學, 2008
    [26] Xu S H. Stability Evolution Law of Open-oit Coal Mine Slope in High-altitude Permafrost Area[Dissertation]. Xi’an: Xi’an University of Technology, 2017

    徐拴海. 多年凍巖露天煤礦邊坡穩定性演化規律研究[學位論文]. 西安: 西安理工大學, 2017
    [27] Yang C W, Zhang J J, Liu F C, et al. Analysis on two typical landslide hazard phenomena in the Wenchuan earthquake by field investigations and shaking table tests. Int J Environ Res Public Health, 2015, 12(8): 9181 doi: 10.3390/ijerph120809181
    [28] Huang R Q, Zhao J J, Ju N P, et al. Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China. Nat Hazards, 2013, 68(2): 1021 doi: 10.1007/s11069-013-0671-5
    [29] Che A L, Yang H K, Wang B, et al. Wave propagations through jointed rock masses and their effects on the stability of slopes. Eng Geol, 2016, 201: 45 doi: 10.1016/j.enggeo.2015.12.018
    [30] Fan G, Zhang J J, Wu J B, et al. Dynamic response and dynamic failure mode of a weak intercalated rock slope using a shaking table. Rock Mech Rock Eng, 2016, 49(8): 3243 doi: 10.1007/s00603-016-0971-7
    [31] Zhang Z L, Wang T, Wu S R, et al. Seismic performance of loess-mudstone slope in Tianshui–Centrifuge model tests and numerical analysis. Eng Geol, 2017, 222: 225 doi: 10.1016/j.enggeo.2017.04.006
    [32] Li Y D, Cui J, Guan T D, et al. Investigation into dynamic response of regional sites to seismic waves using shaking table testing. Earthq Eng Eng Vib, 2015, 14(3): 411 doi: 10.1007/s11803-015-0033-2
    [33] Huang Z. Seepage Evolution in Rock Masses and Catastrophe Mechanism of Water Inrush under Liquid-Solid Coupling Effect[Dissertation]. Xuzhou: China University of Mining and Technology, 2016

    黃震. 流固耦合作用下巖體滲流演化規律與突水災變機理研究[學位論文]. 徐州: 中國礦業大學, 2016
    [34] Yang Z P, Liu S L, Liu Y Q, et al. Dynamic stability analysis of bedding and toppling rock slopes under repeated micro-seismic action. Chin J Geotech Eng, 2018, 40(7): 1277

    楊忠平, 劉樹林, 劉永權, 等. 反復微震作用下順層及反傾巖質邊坡的動力穩定性分析. 巖土工程學報, 2018, 40(7):1277
    [35] Wang L G, Xi Y H, Liu X F, et al. Analysis on stress state adjustment and collapse of rock slope subject to seismic loads. Chin Civ Eng J, 2015, 48(12): 109

    王來貴, 習彥會, 劉向峰, 等. 地震載荷作用下巖質邊坡應力狀態調整與破壞規律分析. 土木工程學報, 2015, 48(12):109
    [36] Feng X X, Jiang Q H, Zhang H C, et al. Shaking table test on seismic response of rock slope. J Vib Meas Diagn, 2018, 38(3): 575

    馮細霞, 姜清輝, 張慧超, 等. 巖質邊坡地震響應振動臺試驗研究. 振動、測試與診斷, 2018, 38(3):575
    [37] Huang Y. Research on Freeze-Thaw Mechanical Behavior of Rock Mass and Collapse Formation Mechanism along the Highway Located in Alpine and Strong Earthquake Regions——Taking Side Slope of Tianshan Highway as An Example[Dissertation]. Chengdu: Chengdu University of Technology, 2012

    黃勇. 高寒山區巖體凍融力學行為及崩塌機制研究——以天山公路邊坡為例[學位論文]. 成都: 成都理工大學, 2012
    [38] Li G F, Li N, Liu N F, et al. Practical algorithm of THM coupling process with ice-water phase change based on FLAC3D. Chin J Rock Mech Eng, 2017, 36(Suppl 2): 3841

    李國鋒, 李寧, 劉乃飛, 等. 基于FLAC3D的含相變三場耦合簡化算法. 巖石力學與工程學報, 2017, 36(增刊2): 3841
    [39] Huang S B, Liu Q S, Cheng A P, et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application. Cold Reg Sci Technol, 2018, 145: 142 doi: 10.1016/j.coldregions.2017.10.015
    [40] Huang S B, Liu Q S, Cheng A P, et al. A fully coupled thermo-hydro-mechanical model including the determination of coupling parameters for freezing rock. Int J Rock Mech Min Sci, 2018, 103: 205 doi: 10.1016/j.ijrmms.2018.01.029
    [41] Huang S B. Study on the Mechanism of Freeze-thaw Damage and Multi-Field Coupling of Fractured Rock Mass under Low Temperature[Dissertation]. Wuhan: University of Chinese Academy of Sciences, 2016

    黃詩冰. 低溫裂隙巖體凍融損傷機理及多場耦合過程研究[學位論文]. 武漢: 中國科學院大學, 2016
    [42] Liu N F. The Fully Coupled Modeling of the Deformation-Hydraulic-Thermal-Chemical Behavior for the Fractured Rock Mass in Cold Regions[Dissertation]. Xi’an: Xi’an University of Technology, 2017

    劉乃飛. 寒區裂隙巖體變形−水分−熱質−化學四場耦合理論構架研究[學位論文]. 西安: 西安理工大學, 2017
    [43] Shen Y J, Yang G S, Huang H W, et al. The impact of environmental temperature change on the interior temperature of quasi-sandstone in cold region: experiment and numerical simulation. Eng Geol, 2018, 239: 241 doi: 10.1016/j.enggeo.2018.03.033
    [44] Li B E. Numerical Analysis on Coupled Solid–Liquid–Air of Unsaturated Accumulation Soil Slope due to Rainfall[Dissertation]. Chengdu: Chengdu University of Technology, 2015

    李濱鍔. 降雨作用下非飽和堆積邊坡固−液−氣耦合模型的數值分析[學位論文]. 成都: 成都理工大學, 2015
    [45] Chen Y F, Zhou C B, Tong F G, et al. Numerical model for fully coupled THM processes with multiphase flow and code validation. Chin J Rock Mech Eng, 2009, 28(4): 649 doi: 10.3321/j.issn:1000-6915.2009.04.001

    陳益峰, 周創兵, 童富果, 等. 多相流傳輸THM全耦合數值模型及程序驗證. 巖石力學與工程學報, 2009, 28(4):649 doi: 10.3321/j.issn:1000-6915.2009.04.001
    [46] Ban G G, Dai J Y. Construction of coupling model in solid-liquid-gas three phase rock mass. J Univ South China Sci Technol, 2017, 31(3): 39

    班改革, 戴劍勇. 巖體固液氣三相多場耦合模型的構建. 南華大學學報: 自然科學版, 2017, 31(3):39
    [47] Codeglia D, Dixon N, Fowmes G J, et al. Analysis of acoustic emission patterns for monitoring of rock slope deformation mechanisms. Eng Geol, 2017, 219: 21 doi: 10.1016/j.enggeo.2016.11.021
    [48] Codeglia D, Dixon N, Fowmes G J, et al. Strategies for rock slope failure early warning using acoustic emission monitoring //IOP Conference Series: Earth and Environmental Science. Warwick, 2015: 1
    [49] Smith A, Dixon N. Quantification of landslide velocity from active waveguide–generated acoustic emission. Can Geotech J, 2014, 52(4): 413
    [50] Dixon N, Spriggs M P, Smith A, et al. Quantification of reactivated landslide behaviour using acoustic emission monitoring. Landslides, 2015, 12(3): 549 doi: 10.1007/s10346-014-0491-z
    [51] Luo L H, Ma W, Zhang Z Q, et al. Freeze/thaw-induced deformation monitoring and assessment of the slope in permafrost based on terrestrial laser scanner and GNSS. Remote Sens, 2017, 9(3): 1
    [52] Teza G, Marcato G, Pasuto A, et al. Integration of laser scanning and thermal imaging in monitoring optimization and assessment of rockfall hazard: a case history in the Carnic Alps (Northeastern Italy). Nat Hazards, 2015, 76(3): 1535 doi: 10.1007/s11069-014-1545-1
    [53] Draebing D, Haberkorn A, Krautblatter M, et al. Thermal and mechanical responses resulting from spatial and temporal snow cover variability in permafrost rock slopes, Steintaelli, Swiss Alps. Permafrost Periglacial Processes, 2017, 28(1): 140 doi: 10.1002/ppp.1921
    [54] Atzeni C, Barla M, Pieraccini M, et al. Early warning monitoring of natural and engineered slopes with ground-based synthetic-aperture radar. Rock Mech Rock Eng, 2015, 48(1): 235 doi: 10.1007/s00603-014-0554-4
    [55] Di Matteo L, Romeo S, Kieffer D S. Rock fall analysis in an Alpine area by using a reliable integrated monitoring system: results from the Ingelsberg slope (Salzburg Land, Austria). Bull Eng Geol Environ, 2017, 76(2): 413 doi: 10.1007/s10064-016-0980-5
    [56] Qin H N. Study on Waste Dump Landslide Inducement Mechanism and Monitoring and Early Warning Technology of Zijinshan Gold and Copper Mine[Dissertation]. Beijing: University of Science and Technology Beijing, 2016

    秦宏楠. 紫金山金銅礦排土場滑坡誘發機理及監測預警技術研究[學位論文]. 北京: 北京科技大學, 2016
    [57] Meng Y S, Lan H X, Li L P, et al. Characteristics of surface deformation detected by X-band SAR interferometry over Sichuan-Tibet grid connection project area, China. Remote Sens, 2015, 7(9): 12265 doi: 10.3390/rs70912265
    [58] Pei H F, Yin J H, Zhu H H, et al. In-situ monitoring of displacements and stability evaluation of slope based on fiber Bragg grating sensing technology. Chin J Rock Mech Eng, 2010, 29(8): 1570

    裴華富, 殷建華, 朱鴻鵠, 等. 基于光纖光柵傳感技術的邊坡原位測斜及穩定性評估方法. 巖石力學與工程學報, 2010, 29(8):1570
    [59] Zhang Y L. Research on BDS Dual-Antenna Key Technology of High Precision Deformation Monitoring and Its Application[Dissertation]. Beijing: Beijing Jiaotong University, 2018

    張云龍. 北斗雙天線高精度變形監測關鍵技術及其應用研究[學位論文]. 北京: 北京交通大學, 2018
    [60] Subramanian S S, Ishikawa T, Tokoro T. Stability assessment approach for soil slopes in seasonal cold regions. Eng Geol, 2017, 221: 154 doi: 10.1016/j.enggeo.2017.03.008
    [61] Korshunov A A, Doroshenko S P, Nevzorov A L. The impact of freezing-thawing process on slope stability of earth structure in cold climate. Procedia Eng, 2016, 143: 682 doi: 10.1016/j.proeng.2016.06.100
    [62] Zhou J W, Cui P, Hao M H. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides, 2016, 13(1): 39 doi: 10.1007/s10346-014-0553-2
    [63] Li M, Song Y, Chen F. Analyses on stability of slope in a typical cold region based on thermo-mechanical coupling. Bulg Chem Commun, 2016, 48: 96
    [64] Liu Q S, Huang, S B, Kang Y S, et al. Advance and review on freezing-thawing damage of fractured rock. Chin J Rock Mech Eng, 2015, 34(3): 452

    劉泉聲, 黃詩冰, 康永水, 等. 裂隙巖體凍融損傷研究進展與思考. 巖石力學與工程學報, 2015, 34(3):452
    [65] Zhou Z D, Tao R, Dang Y P. Deformation and Failure Mechanism and Comprehensive Treatment Technology of Slope in Plateau Alpine Region. Chengdu: Southwest Jiaotong University Press, 2015

    周志東, 陶然, 黨永平. 高原高寒地區邊坡變形破壞機制與綜合治理技術. 成都: 西南交通大學出版社, 2015
    [66] Li J L, Zhou K P, Liu W J, et al. Analysis of the effect of freeze–thaw cycles on the degradation of mechanical parameters and slope stability. Bull Eng Geol Environ, 2018, 77(2): 573 doi: 10.1007/s10064-017-1013-8
    [67] Luo X D, Jiang N, Fan X Y, et al. Effects of freeze–thaw on the determination and application of parameters of slope rock mass in cold regions. Cold Reg Sci Technol, 2015, 110: 32 doi: 10.1016/j.coldregions.2014.11.002
    [68] Jia H L, Xiang W, Shen Y J, et al. Discussion of the key issues within calculation of the fatigue damage of rocks subjected to freeze-thaw cycles. Chin J Rock Mech Eng, 2017, 36(2): 335

    賈海梁, 項偉, 申艷軍, 等. 凍融循環作用下巖石疲勞損傷計算中關鍵問題的討論. 巖石力學與工程學報, 2017, 36(2):335
    [69] Ji H G, Xiang P, Han F, et al. Structural changes and failure mode of open-pit slope under underground mining disturbance. J China Coal Soc, 2012, 37(2): 211

    紀洪廣, 向鵬, 韓放, 等. 地下開采擾動條件下露天礦邊坡巖體結構變異與失穩模式分析. 煤炭學報, 2012, 37(2):211
    [70] Yao W M, Hu B, Yu H B, et al. Numerical analysis of the failure modes and stability of 3D slopes with interbreeding of soft and hard rocks. Chin J Eng, 2017, 39(2): 182

    姚文敏, 胡斌, 余海兵, 等. 三維軟硬互層邊坡的破壞模式與穩定性研究. 工程科學學報, 2017, 39(2):182
    [71] Yang T H, Zhang F C, Yu Q L, et al. Research situation of open-pit mining high and steep slope stability and its developing trend. Rock Soil Mech, 2011, 32(5): 1437 doi: 10.3969/j.issn.1000-7598.2011.05.025

    楊天鴻, 張鋒春, 于慶磊, 等. 露天礦高陡邊坡穩定性研究現狀及發展趨勢. 巖土力學, 2011, 32(5):1437 doi: 10.3969/j.issn.1000-7598.2011.05.025
    [72] Li J F, Wan C, Zhao Y. Evaluation study of rock slope stability in alpine high altitude region. J Chongqing Jiaotong Univ Nat Sci, 2015, 34(2): 45

    李建峰, 萬臣, 趙勇. 高寒高海拔地區巖質邊坡穩定性評價研究. 重慶交通大學學報: 自然科學版, 2015, 34(2):45
    [73] Qiao G W, Wang Y S, Yang X L. Study of rock mass quality evaluation system of freezing-thawing and weathering slopes. Rock Soil Mech, 2015, 36(2): 515

    喬國文, 王運生, 楊新龍. 凍融風化邊坡巖體質量評價體系研究. 巖土力學, 2015, 36(2):515
    [74] Wang B, Feng X T, Pan P Z, et al. Slope failure analysis using the material point method. Chin J Rock Mech Eng, 2017, 36(9): 2146

    王斌, 馮夏庭, 潘鵬志, 等. 物質點法在邊坡穩定性評價中的應用研究. 巖石力學與工程學報, 2017, 36(9):2146
  • 加載中
圖(6) / 表(2)
計量
  • 文章訪問數:  1620
  • HTML全文瀏覽量:  1238
  • PDF下載量:  115
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-05-07
  • 刊出日期:  2019-11-01

目錄

    /

    返回文章
    返回