<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

長時間頸部前屈對頸部肌肉疲勞的影響

徐明偉 金龍哲 于露 劉建國 張安琪

徐明偉, 金龍哲, 于露, 劉建國, 張安琪. 長時間頸部前屈對頸部肌肉疲勞的影響[J]. 工程科學學報, 2019, 41(11): 1493-1500. doi: 10.13374/j.issn2095-9389.2019.04.24.007
引用本文: 徐明偉, 金龍哲, 于露, 劉建國, 張安琪. 長時間頸部前屈對頸部肌肉疲勞的影響[J]. 工程科學學報, 2019, 41(11): 1493-1500. doi: 10.13374/j.issn2095-9389.2019.04.24.007
XU Ming-wei, JIN Long-zhe, YU Lu, LIU Jian-guo, ZHANG An-qi. Effect of long-term bowing of the head on neck muscle fatigue[J]. Chinese Journal of Engineering, 2019, 41(11): 1493-1500. doi: 10.13374/j.issn2095-9389.2019.04.24.007
Citation: XU Ming-wei, JIN Long-zhe, YU Lu, LIU Jian-guo, ZHANG An-qi. Effect of long-term bowing of the head on neck muscle fatigue[J]. Chinese Journal of Engineering, 2019, 41(11): 1493-1500. doi: 10.13374/j.issn2095-9389.2019.04.24.007

長時間頸部前屈對頸部肌肉疲勞的影響

doi: 10.13374/j.issn2095-9389.2019.04.24.007
基金項目: 國家重點研發計劃課題資助項目(2016YFC0801700)
詳細信息
    通訊作者:

    E-mail: lzjin@ustb.edu.cn

  • 中圖分類號: TG142.71

Effect of long-term bowing of the head on neck muscle fatigue

More Information
  • 摘要: 長期頸部前屈對頸椎造成嚴重影響。為定量評估長時間低頭對頸椎疲勞造成的影響,選取20名健康受試者,保持低頭角度40°~60°持續3 h。選擇胸鎖乳突肌,頸部夾肌和肩部斜方肌測量其表面肌電信號。經濾波、整流、振幅標準化等處理后,對每60 s的肌電值進行積分和求其平均功率頻率。研究發現,積分肌電值的波動變化具有規律性,首次增大后的減小表征肌肉進入疲勞狀態;不同肌肉的平均功率頻率(mean power frequency,MPF)值具有明顯差異,決定著該肌肉疲勞耐受性的持續時間,且在整個頸部前屈過程中MPF并非簡單的線性關系。提出用MPF的導數來提取疲勞特征,用窗口化的MPF負數累積判定肌肉疲勞。結果表明,MPF負數累積能很好地判斷肌肉疲勞,胸鎖乳突肌在20 min內出現最終疲勞,而頸部夾肌和肩部斜方肌在20 min左右出現了短暫性疲勞,隨后在75~100 min時又出現了最終疲勞。因此建議持續頸部前屈時長不超過20 min。

     

  • 圖  1  表面肌電采集配件

    Figure  1.  Surface electromyography acquisition accessories

    圖  2  人體坐姿尺寸圖

    Figure  2.  Dimensional figure of human sitting posture

    圖  3  實驗肌肉測量位置

    Figure  3.  Experimental muscle measurement position

    圖  4  部分實驗場景

    Figure  4.  Part of the experimental scenario

    圖  5  不同肌肉肌電積分值. (a) 1號受試者胸鎖乳突肌;(b) 1號受試者頸部夾肌;(c) 1號受試者斜方肌;(d) 2號受試者胸鎖乳突肌肌;(e) 2號受試者頸部夾肌;(f) 2號受試者頸部夾肌;(g) 3號受試者胸鎖乳突肌;(h) 3號受試者頸部夾肌;(i) 3號受試者斜方肌;(j) 4號受試者胸鎖乳突肌;(k) 4號受試者頸部夾肌;(l) 4號受試者斜方肌

    Figure  5.  iEMG of different muscles: (a) sternocleidomastoid muscle of subject 1; (b) cervical clamp muscle of subject 1; (c) trapezius muscle of subject 1; (d) sternocleidomastoid muscle of subject 2; (e) cervical clamp muscle of subject 2; (f) cervical clamp muscle of subject 2; (g) sternocleidomastoid muscle of subject 3; (h) cervical clamp muscle of subject 3; (i) trapezius muscle of subject 3; (j) sternocleidomastoid muscle of subject 4; (k) cervical clamp muscle of subject 4; (l) trapezius muscle of subject 4

    圖  6  不同肌肉的MPF

    Figure  6.  MPF of different muscles

    圖  7  不同肌肉的MPF導數

    Figure  7.  MPF derivatives of different muscles

    圖  8  MPF導數值的疊加值

    Figure  8.  Superposition of MPF derivatives

    表  1  iEMG變化時間統計

    Table  1.   iEMG change time

    肌肉部位iEMG首次明顯增大時刻/mint檢驗iEMG再次明顯增大時刻/mint檢驗
    胸鎖乳突肌16±4P<0.0562±8P<0.05
    頸部夾肌15±5P<0.0582±10P<0.05
    斜方肌17±4P<0.0572±8P<0.05
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] He J B. Analysis of the Correlation of Neck Pain with Cervical Curvature and Tendon Injury in Juveniles[Dissertation]. Guangzhou: Guangzhou University of Chinese Medicine, 2017

    何劍波. 青少年頸痛與筋傷、頸椎曲度的相關性研究[學位論文]. 廣州: 廣州中醫藥大學, 2017
    [2] Zhao Y. The prevalence of cervical spondylosis in young Chinese is higher than that in middle-aged people[J/OL]. People's Political Consultative Conference Network (2016−01−14)[2019−06−13]. http://www.rmzxb.com.cn/c/2016-01-14/672352.shtml

    趙彥. 中國年輕人頸椎患病率已超中年人[J/OL]. 人民政協網(2016-01−14)[2019−06−13]. http://www.rmzxb.com.cn/c/2016−01−14/672352.shtml
    [3] Bai J B, Yu K L, Sun Y N, et al. Prevalence of and risk factors for Modic change in patients with symptomatic cervical spondylosis: an observational study. J Pain Res, 2018, 11: 355 doi: 10.2147/JPR.S151795
    [4] Ko P H, Hwang Y H, Liang H W. Influence of smartphone use styles on typing performance and biomechanical exposure. Ergonomics, 2016, 59(6): 821 doi: 10.1080/00140139.2015.1088075
    [5] Lee H, Nicholson L L, Adams R D. Neck muscle endurance, self-report, and range of motion data from subjects with treated and untreated neck pain. J Manipulative Physiol Ther, 2005, 28(1): 25 doi: 10.1016/j.jmpt.2004.12.005
    [6] Moreno A J, Utrilla G, Marin J, et al. Cervical spine assessment using passive and active mobilization recorded through an optical motion capture. J Chiropractic Med, 2018, 17(3): 167 doi: 10.1016/j.jcm.2017.12.004
    [7] Burhan N, Kasno M A, Ghazali R. Feature extraction of surface electromyography (sEMG) and signal processing technique in wavelet transform: A review //2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS). Shah Alam, 2016: 141
    [8] Sasaki M, Onishi K, Stefanov D, et al. Tongue interface based on surface EMG signals of suprahyoid muscles. ROBOMECH J, 2016, 3(1): 9 doi: 10.1186/s40648-016-0048-0
    [9] Neblett R. Surface electromyographic (SEMG) biofeedback for chronic low back pain. Healthcare, 2016, 4(2): 27 doi: 10.3390/healthcare4020027
    [10] Du Y X Wang S Y, Ndaro N Z, et al. Comparative study on evaluation algorithms for neck muscle fatigue based on surface electromyography signal. J Biomed Eng, 2018, 35(1): 31

    杜云霄, 王殊軼, Ndaro N Z, 等. 基于表面肌電信號的頸部肌肉疲勞評價算法比較研究. 生物醫學工程學雜志, 2018, 35(1):31
    [11] Strimpakos N. The assessment of the cervical spine. Part 1: Range of motion and proprioception. J Bodywork Movement Therapies, 2011, 15(1): 114 doi: 10.1016/j.jbmt.2009.06.003
    [12] Wang L, Luo X, Jiang X, et al. Detection on driver fatigue based on biomechanics and EMG of cervical and lumbar muscles. Automot Eng, 2017, 39(8): 955

    王琳, 羅旭, 姜鑫, 等. 基于生物力學和頸腰部EMG判別駕駛員疲勞狀態. 汽車工程, 2017, 39(8):955
    [13] Ren Z, Yang W Q. A miniature two-plate electrical capacitance tomography sensor. IEEE Sensors J, 2015, 15(5): 3037 doi: 10.1109/JSEN.2014.2383491
    [14] Al-Alangari H M, Kanitz G, Tarantino S, et al. Distance and mutual information methods for EMG feature and channel subset selection for classification of hand movements. Biomed Signal Process Control, 2016, 27: 24 doi: 10.1016/j.bspc.2016.01.011
    [15] Eveleth P B, Andres R, Chumlea W C, et al. Uses and interpretation of anthropometry in the elderly for the assessment of physical status. Report to the Nutrition Unit of the World Health Organization: the Expert Subcommittee on the Use and Interpretation of Anthropometry in the Elderly. J Nutrition Health Aging, 1998, 2(1): 5
    [16] Portero R, Quaine F, Cahouet V, et al. Musculo-tendinous stiffness of head-neck segment in the sagittal plane: An optimization approach for modeling the cervical spine as a single-joint system. J Biomechanics, 2013, 46(5): 925 doi: 10.1016/j.jbiomech.2012.12.009
    [17] Skinner M A, Kingshott R N, Jones D R, et al. Lack of efficacy for a cervicomandibular support collar in the management of obstructive sleep apnea. Chest, 2004, 125(1): 118 doi: 10.1378/chest.125.1.118
    [18] Oi N, Pandy M G, Myers B S, et al. Variation of neck muscle strength along the human cervical spine. Stapp Car Crash J, 2004, 48: 389
    [19] Suderman B L, Vasavada A N. Moving muscle points provide accurate curved muscle paths in a model of the cervical spine. J Biomechanics, 2012, 45(2): 400 doi: 10.1016/j.jbiomech.2011.10.014
    [20] Artz N J, Adams M A, Dolan P. Sensorimotor function of the cervical spine in healthy volunteers. Clin Biomechanics, 2015, 30(3): 260 doi: 10.1016/j.clinbiomech.2015.01.005
    [21] Nimbarte A D, Zreiqat M, Ning X P. Impact of shoulder position and fatigue on the flexion-relaxation response in cervical spine. Clin Biomechanics, 2014, 29(3): 277 doi: 10.1016/j.clinbiomech.2013.12.003
    [22] Merletti R, Farina D. Detection and Conditioning of Surface EMG Signals. Hoboken: Wiley-IEEE Press, 2016
    [23] Vesa E P, Ilie B. Equipment for SEMG signals acquisition and processing // International Conference on Advancements of Medicine and Health Care through Technology. Cluj-Napoca, 2014: 187
    [24] Slim Y, Raoof K. Removal of ECG interference from surface respiratory electromyography. IRBM, 2010, 31(4): 209 doi: 10.1016/j.irbm.2010.05.002
    [25] Chowdhury R H, Reaz M B I, Ali M A B M, et al. Surface electromyography signal processing and classification techniques. Sensors, 2013, 13(9): 12431 doi: 10.3390/s130912431
    [26] Merletti R, Farina D. Surface EMG processing: Introduction to the special issue. Biomed Signal Process Control, 2008, 3(2): 115 doi: 10.1016/j.bspc.2008.01.001
    [27] Dumitru D, King J C, Nandedkar S D. Comparison of single-fiber and macro electrode recordings: relationship to motor unit action potential duration. Muscle Nerve, 1997, 20(11): 1381 doi: 10.1002/(SICI)1097-4598(199711)20:11<1381::AID-MUS5>3.0.CO;2-6
    [28] Min L, Sarkar N, Guang M, et al. Can surface EMG be adequately described by digital sampling? Nonlinear Dyn Psychology Life Sci, 2014, 18(3): 229
    [29] Wang L L, Yang Z, Liu Y B, et al. Study on muscle fatigue characteristics of males at different ages based on sEMG signal. Chin J Rehabil Med, 2019, 34(2): 204 doi: 10.3969/j.issn.1001-1242.2019.02.016

    王立玲, 楊錚, 劉元博, 等. 基于sEMG信號的不同年齡下男性肌肉疲勞特性研究. 中國康復醫學雜志, 2019, 34(2):204 doi: 10.3969/j.issn.1001-1242.2019.02.016
    [30] Wang L, Fu R R, Zhang C, et al. Biomechanics-based investigation on the relation between index Q and cervical muscle fatigue. Chin J Sci Instrum, 2017, 38(4): 878 doi: 10.3969/j.issn.0254-3087.2017.04.012

    王琳, 付榮榮, 張陳, 等. 基于生物力學分析Q值對頸肌疲勞的反映效果. 儀器儀表學報, 2017, 38(4):878 doi: 10.3969/j.issn.0254-3087.2017.04.012
    [31] Guo Y L, Liu X P, Chen B H, et al. Types and distribution of cervical posterior deep muscle. Acta Acad Med Qingdao, 1999, 35(1): 13

    郭云良, 劉曉萍, 陳伯華, 等. 頸后深部肌肉纖維類型的分布. 青島醫學院學報, 1999, 35(1):13
    [32] Huang Y Q. The Anatomical and Clinical Study on Myofascial pain of Sternocleidomastoid Muscle[Dissertation]. Guangzhou: First Military Medical University, 2005

    黃宇琦. 胸鎖乳突肌筋膜痛的解剖學及其臨床研究[學位論文]. 廣州: 第一軍醫大學, 2005
    [33] Peng Y T, Huang H. Review on the effect of KAATUS training. Genomics Appl Biol, 2018, 37(12): 5676

    彭一騰, 黃驊. 加壓力量訓練的研究評述. 基因組學與應用生物學, 2018, 37(12):5676
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數:  1710
  • HTML全文瀏覽量:  1123
  • PDF下載量:  66
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-04-24
  • 刊出日期:  2019-11-01

目錄

    /

    返回文章
    返回